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Abstract

For scalar, electromagnetic, or gravitational wave propagation on a fixed Schwarzschild blackhole background, we

describe the exact nonlocal radiation outer boundary conditions (ROBC) appropriate for a spherical outer boundary of

finite radius enclosing the blackhole. Derivation of the ROBC is based on Laplace and spherical-harmonic transfor-

mation of the Regge–Wheeler equation, the PDE governing the wave propagation, with the resulting radial ODE an

incarnation of the confluent Heun equation. For a given angular index l the ROBC feature integral convolution between

a time-domain radiation boundary kernel (TDRK) and each of the corresponding 2lþ 1 spherical-harmonic modes of

the radiation field. The TDRK is the inverse Laplace transform of a frequency-domain radiation kernel (FDRK) which

is essentially the logarithmic derivative of the asymptotically outgoing solution to the radial ODE. We develop several

numerical methods for examining the frequency dependence of both the outgoing solution and the FDRK. Using these

methods we numerically implement the ROBC in a follow-up article. Our work is a partial generalization to

Schwarzschild wave propagation and Heun functions of the methods developed for flatspace wave propagation and

Bessel functions by Alpert, Greengard, and Hagstrom (AGH), save for one key difference. Whereas AGH had the usual

armamentarium of analytical results (asymptotics, order recursion relations, bispectrality) for Bessel functions at their

disposal, what we need to know about Heun functions must be gathered numerically as relatively less is known about

them.
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1. Introduction

This article is essentially the first half of [1], while a follow-up article [2], submitted elsewhere, is the
second half. Although we occasionally mention results from [1,2], this article is completely self-contained.
1.1. Background

Consider the Cauchy problem 2 for the scalar wave equation,

�o2t U þ DU ¼ 0; ð1Þ

on ½t0; tF� � E3, the Cartesian product of a closed time interval and Euclidean three-space. First, we specify

suitable initial-value or canonical data U jt0 and otU jt0 on E3 at the initial time t0. Next, using the rule (1), we

evolve the data until the final time tF, along the way generating the solution U throughout the temporally

bounded but spatially unbounded domain ½t0; tF� � E3. Provided physically reasonable initial data, this

problem is well-posed; however, it is not the evolution problem one typically encounters in numerical wave

simulation. Usually the numerical mesh covers only a finite portion of E3.
With the finiteness of numerical meshes in mind, consider the following more realistic evolution

problem. Let R � E3 be a round, solid, three-dimensional ball determined by r6 rB, with rB a fixed outer

radius, on which we specify compactly supported initial data U jt0 and otU jt0 at t ¼ t0. Again, the goal is to

evolve the data, although now generating the solution U on the finite domain M ¼ ½t0; tF� � R depicted in

Fig. 1. Respectively, let R0 and RF denote the ball R at t ¼ t0 and t ¼ tF. One element of the boundary

oM ¼ R0 [ RF [ 3B is a timelike three-dimensional cylinder 3B determined by t0 6 t6 tF and r ¼ rB. Note

that 3B is the history in time of the spherical spatial boundary B ¼ oR. As it stands, such an evolution

problem is not well-posed, since M is larger than the future domain of dependence of R0. Indeed, U jt0 and
otU jt0 are free data, and we have no control over data on E3=R0, the region exterior to the initial R ball.

Data on this exterior region may contain so-called ingoing radiation which will impinge upon 3B at later

times, affecting the solution U within M. Most often in numerical wave simulation the goal is to forbid

such ingoing radiation by the choice of radiation boundary conditions, that is explicit rules governing the

behavior of U and otU on 3B. Often referred to as nonreflecting boundary conditions (NRBC), for the

described problem such conditions ideally specify that the spherical boundary B is completely transparent.

Due to the free nature of the initial data, exact NRBC are inherently nonlocal in both space and time.

With NRBC specified along 3B, we may refer to such an evolution as a mixed Cauchy-boundary value

problem.

More generally, one might consider radiation boundary conditions associated with some other PDE

and/or different type of B boundary, say cubical or irregularly shaped. Refs. [5–21] pertain either to the

described spherical problem or to more general radiation boundary conditions. This is certainly not an

exhaustive list, and we point the reader to review articles [12,18,21] for more comprehensive listings.

Although we do not attempt an extensive literature review, we make mention of a few approaches to

radiation boundary conditions in order to put our work in some context. Two pioneering early works are

those of Engquist and Majda [6,7] and Bayliss and Turkel [9]. Each develops a hierarchy of local dif-
ferential conditions of increasing complexity. Engquist and Majda’s work is based on exact radiation

boundary conditions as expressed within the theory of pseudo-differential operators, and their approach is

not necessarily tied to a spherical geometry nor to the ordinary wave equation. Also considering more
2 We use Cauchy problem in lieu of initial-value problem in order to reserve the latter for the process of generating initial data, one

that requires the solution of elliptic PDE for theories involving constraints such as general relativity or fluid flow.
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Fig. 1. Finite spacetime domain M � E3 with boundary oM ¼ R0 [ RF [ 3B. Respectively, R0 and RF denote the solid round ball R at

the initial time t0 and the final time tF. Radiation boundary conditions are given on the three-dimensional timelike cylinder 3B. Our

geometric perspective on the ‘‘quasilocal’’ spacetime region M comes from [3,4].
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than just our problem above, Bayliss and Turkel base their approach on asymptotic expansions about

infinity, for example the standard multipole expansion for a radiating field obeying the ordinary wave

equation (1). Another approach to radiation boundary conditions utilizes absorbing layers, and as an

example we mention [11]. In the introduction of his review article [18], Hagstrom describes the main

advances made in the 1990s on several fronts related to radiation boundary conditions: (i) improved

implementations of hierarchies, such as the ones mentioned, (ii) new absorbing layer techniques exhibiting
reflectionless interfaces, and (iii) efficient algorithms for evaluation of exact nonlocal boundary operators.

Results [15–17] of Grote and Keller fall within this first category. An advance on the second front was the

introduction of perfectly matched layers by B�erenger [14], while a key advance on the third was the rapid

implementation of NRBC for spherical boundaries by Alpert et al. [19,20]. See also related work by

Sofronov [13]. Hagstrom discusses the state of the art for fronts (ii) and (iii) in his second review article

[21].

Since our investigation follows that of Alpert, Greengard, and Hagstrom (AGH) belonging to category

(iii) in the last paragraph, let us describe it in detail. Taking advantage of the linearity, time-independence,
and rotational invariance of (1), AGH employ both Laplace and spherical-harmonic transformation in

order to obtain a second-order radial ODE (the modified spherical Bessel equation). Working in the fre-

quency-domain with the two linearly independent solutions to this ODE, they are able to determine the

correct form of a radiating solution, provided that they examine the said solution at a radial location

beyond the support of the initial data. Via inverse Laplace transformation of the radial derivative of this

correct frequency-domain solution, they then introduce a nonreflecting boundary kernel, here called a time-

domain radiation kernel (TDRK). The TDRK is the inverse Laplace transform of a frequency-domain ra-

diation kernel (FDRK) which is essentially the logarithmic derivative of a modified Bessel function. To
sharpen this statement, first consider the standard half-integer order MacDonald function [22] Klþ1=2ðzÞ with
angular index l, and also the associated function WlðzÞ ¼ ðpz=2Þ1=2 expðzÞKlþ1=2ðzÞ more closely related to a

confluent hypergeometric function. Here z ¼ sr is shorthand for the product of Laplace frequency s and

radius r. In terms of the fixed outer boundary radius rB, the TDRK for angular index l is the inverse

Laplace transform of the FDRK srBW 0
l ðsrBÞ=WlðsrBÞ. Such a logarithmic derivative is a sum of l simple



S.R. Lau / Journal of Computational Physics 199 (2004) 376–422 379
poles in the complex s-plane, whence its inverse Laplace transform is a corresponding sum of exponen-

tials. 3 AGH also employ an algorithm for kernel compression, that is rational approximation of the

FDRK. We comment on this algorithm in Section 2.4.2, and describe it in detail in both [1,2].

1.2. Problem statement

Now consider the evolution problem for the scalar wave equation,

X3

l;m¼0

1ffiffiffiffiffiffiffi�g
p

o

oxl
ffiffiffiffiffiffiffi�g

p
glm

oU
oxm

� �
¼ 0; ð2Þ

describing a field U propagating on a Schwarzschild blackhole determined by glm metric functions. A slight

modification of (2) yields a wave equation flexible enough to also describe propagation of electromagnetic

or gravitational waves on a Schwarzschild blackhole [24–27]. As a model of gravitational wave propaga-

tion, the problem has applications in relativistic astrophysics: non-spherical gravitational collapse and
stellar perturbations, among others. Gravitational wave propagation is also of considerable theoretical

interest in general relativity. With numerical wave simulation on a finite mesh in mind, we again choose a

finite domain R, now a round, three-dimensional, thick shell also bounded internally by the blackhole

horizon H . The outer boundary B, one element of oR ¼ B [ H , is again specified by r ¼ rB, while the inner
boundary H corresponds to r ¼ 2m (twice the geometrical mass of the blackhole). Let us set the task of

evolving data U jt0 and otU jt0 given on R0, in order to generate the solution U on the finite domain

M ¼ ½t0; tF� � R with boundary oM ¼ R0 [ RF [ 3B [ 3H . 4 Here 3H , a portion of the future event horizon, is

the three-dimensional characteristic history ½t0; tF� � H of H . To accomplish the task, we need explicit outer
boundary conditions on 3B ¼ ½t0; tF� � B, ones stemming from the assumption of trivial initial data on the

outer spatial region exterior to R0. We refer to these as radiation outer boundary conditions (ROBC). 5 The

ROBC corresponding to (2) are more subtle than simple nonreflection, in part due to the back-scattering of

waves off of curvature.

In discussing finite outer boundary conditions, and ROBC in particular, for relativity, we should first

make a distinction between general relativity, in which the dynamics of spacetime is governed by the full

nonlinear Einstein equations, and its perturbation theory, in which the dynamics of disturbances on a fixed

background solution to the Einstein equations is governed by a linear PDE similar to (2). In this second
paradigm one examines the propagation of weak gravitational waves on a fixed background spacetime

(which may or may not be curved). York’s survey article [28] on the dynamics and kinematics of general

relativity is the best jumping off point for a study of the literature we now mention. Within the context of a

mixed Cauchy-boundary value problem, Friedrich and Nagy have made theoretical progress towards

solving the full Einstein equations on a bounded domain [29]; however, their results do not appear suited

for numerical work. For the most part, approaches towards numerical outer boundary conditions in the full

theory have relied either on matching Cauchy domains to characteristic surfaces (see [30,31] and references

therein) or ensuring that the outer boundary is at a large enough distance so that perturbation theory can
be brought into play (see [32,33] and reference therein). In this latter approach, the relevant perturbative
3 Domain reduction appears in the early work [8] of Gustafsson and Kreiss, although domain reduction via Laplace convolution

appears shortly thereafter in the work [10] of Hagstrom. In [23] Friedlander considered essentially the same convolution kernel but in a

different context.
4 Although it hardly needs to be noted now, our time t here is closely related to the advanced Eddington–Finkelstein coordinate v

discussed in the follow-up article [2]. We could also work with the static time T introduced in Section 2.1.1.
5 Our acronym includes the adjective ‘‘outer’’ in order to distinguish between boundary conditions at B and those at H . Setting

appropriate boundary conditions at H is not nearly so difficult for our problem, since H acts as a one-way membrane. However, for

dynamical spacetimes the issue of inner boundary conditions (at ‘‘apparent horizons’’) is a difficult problem in its own right.
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wave equation is essentially (2); however, the corresponding exact nonlocal ROBC are not used. A very

different approach towards theoretical and numerical outer boundary conditions has been given in [34].

However, it would seem of limited practical use, since it relies on the ‘‘many-fingered’’ nature of time in
general relativity to completely freeze the flow of time at the outer boundary. In terms of harmonic

coordinates Szil�agyi, Schmidt, and Winicour have theoretically and numerically studied mixed Cauchy-

boundary value problems for the Einstein equations linearized about flat Minkowski spacetime [35]. At-

tempts towards implementation of ROBC in numerical relativity have mostly relied on improved versions

of the well-known Sommerfeld condition, although Novak and Bonazzola have considered more general

nonreflecting boundary conditions with relativistic applications in mind [36]. The Sommerfeld condition is

a local boundary condition which is exact for a spherically symmetric outgoing wave in flatspace. For

comments on such approaches as well as other remarks on numerical relativity, see the review article by
Cook and Teukolsky [37]. To date, there seems to have been no truly systematic analysis of algorithm error

for treatments of ROBC in numerical relativity.

We use frequency-domain methods and gather results which resemble those used and found in seminal

work [38] by Leaver and also in related work [39] by Andersson. Despite this resemblance, neither Leaver

nor Andersson considered boundary integral kernels belonging to the finite timelike cylinder 3B. The

starting point for these authors was the exact solution to the Cauchy problem as expressed via an integral

(Green’s function) representation involving R0 spatial convolution with initial data (actually Leaver also

considered more general driving source terms beyond just initial data). As Leaver noted in footnote 21 of
[38], the seeds of this approach are found in Morse and Feshbach’s 1953 treatment [40] of the ordinary

flatspace wave equation, although they have origins in the 19th century. Many authors have since used

frequency-domain and complex-analytic methods to examine the Cauchy problem for perturbations on the

Schwarzschild geometry from this Green’s function perspective, and Andersson’s article [39] is a salient

recent example. However, we stress up-front that our problem of imposing ROBC via domain reduction is

not the same as Leaver and Andersson’s problem, and our work has quite a different focus on 3B temporal

integral convolution. Moreover, the methods – those of AGH – that we describe and use in this article and

its follow-up were only fully developed for the ordinary wave equation in the late 1990s. Section 2.4.3
further compares and contrasts our theoretical analysis with that of Leaver and Andersson.

1.3. Overview of results

In this article and its follow-up [2] we describe both the exact ROBC for (2) and an algorithm for their

rapid numerical implementation. As mentioned, our approach follows AGH quite closely. Eq. (2) is linear,

but necessarily with variable coefficients. Nevertheless, exploiting its time and rotational symmetries, we

may likewise use Laplace and spherical-harmonic transformation in order to obtain a second-order radial
ODE which turns out to be an incarnation of the confluent Heun equation [41,42], also related to the

generalized spheroidal wave equation 6 discussed in some literature [43,44]. Following AGH, we may for-

mally introduce the TDRK as the inverse Laplace transform of the homogeneous logarithmic derivative of

the asymptotically outgoing solution. Analytically, the FDRK, the logarithmic derivative in question, is a

sum of poles, although now the sum is over both a discrete set and a continuous set (similar to the situation

encountered with the flatspace wave equation in 2þ 1 rather than 3þ 1 dimensions [19]). In this article we

focus on both description of the ROBC as well as the numerical methods which justify this description.

These numerical methods are also used to implement the ROBC in [2].
6 The ordinary spheroidal wave equation stems from variable separation of the ordinary wave equation (1) in oblate or prolate

spheroidal coordinates [40].
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1.4. Summary

Section 2 discusses variable transformations, various resulting forms of (2), and the exact ROBC. We
start off by defining dimensionless coordinates for time s, radius q, and Laplace frequency r. For example,

r ¼ 2mq and s ¼ r=ð2mÞ. The outer boundary B is determined q ¼ qB. With these coordinates we introduce

the asymptotically outgoing solution Wlðrq; rÞ to the radial equation, the one corresponding to the Bessel-

type function WlðsrÞ ¼ WlðrqÞ above. For a given angular index l the TDRK xlðs; qBÞ is the inverse Laplace
transform of the FDRK x̂lðr; qBÞ ¼ rqBW

0
l ðrqB; rÞ=WlðrqB;rÞ. We then write the ROBC as an integral

convolution between xlðs; qBÞ and each of the corresponding 2lþ 1 modes wlmðs; qBÞ of the radiating field

wðs; q; h;/Þ, where w is U from above but expressed in terms of different coordinates. Afterwards, we

describe the key representation of x̂lðr; qBÞ as a (continuous and discrete) sum of poles. We also briefly
touch upon the issue of approximating x̂lðr; qBÞ by a rational function (a key technique used in the follow-

up article [2]). Section 2 ends we a comparison between our theoretical analysis and the aforementioned

Green’s function perspective.

Section 3 describes numerical evaluation of both WlðrqB; rÞ and x̂lðr; qB), with the former considered as

a function of complex Laplace frequency r (mostly lying in the lefthalf plane) and the latter as a function of

purely imaginary r ¼ iy. Both types of evaluation rely on numerical integration over certain paths in the

complex plane. We consider several numerical methods, but the main ones involve path integration in terms

of a complex variable z ¼ rq. While numerical evaluation of WlðrqB; rÞ is important insofar as studying the
analytic structure of this function is concerned, implementation of ROBC mainly requires that we are able

to accurately evaluate x̂lðiy; qBÞ for any y 2 R. In this section we also discuss in detail the accuracy of our

numerical methods.

Section 4 focuses on the sum-of-poles representations of x̂lðr; qBÞ. The first subsection is a qualitative

description of the analytic structure of WlðrqB; rÞ and its relevance for the exact sum-of-poles represen-

tation. This subsection examines the zeros in frequency r of WlðrqB; rÞ which correspond to poles of

x̂lðr; qBÞ. It also studies the branch behavior of WlðrqB; rÞ along the negative Re r axis, behavior that gives

rise to a continuous pole distribution (these are not really poles in the sense of complex analysis). This
distribution appears in the exact sum-of-poles representation, and we graphically examine it. The second

subsection presents our direct numerical construction of x̂lðr; qBÞ for 06 l6 10 and qB 2 ½15; 25�. We

discuss several numerical accuracy checks of our direct construction.

A discussion section compares our work that of AGH, our main reference [19].

Throughout this article we make use of the following acronyms:

2. Wave equation and radiation outer boundary conditions

This section sets up the theoretical framework on which the subsequent sections in this article and the
sequel rest.

ROBC radiation outer boundary conditions

ODE ordinary differential equation

PDE partial differential equation

TDRK time-domain radiation (boundary) kernel xlðs; qBÞ
FDRK frequency-domain radiation (boundary) kernel x̂lðr; qBÞ
AGH Alpert, Greengard, and Hagstrom in [19]

NRBC nonreflecting boundary conditions (particular ROBC for flatspace waves)

MSBE modified spherical Bessel equation

LHS left-hand side

RHS right-hand side
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2.1. Wave equation on Schwarzschild background

2.1.1. Line-element

Consider the diagonal line-element describing a static, spherically symmetric, vacuumblackhole ofmassm,

ds2 ¼ �F dT 2 þ F �1 dr2 þ r2 dh2 þ r2 sin2 hd/2; ð3Þ

written with respect to the standard static time T and areal radius r [45,46]. We use uppercase T here to save

lowercase t for a different time coordinate needed later. Note that the metric coefficient F ðrÞ ¼ 1� 2m=r
vanishes – and so F �1 is singular – as r ! 2m. As is well known, r ¼ 2m does not represent a physical

singularity, rather the coordinate system is degenerate for this value of the radius. In these coordinates the

round sphere determined by r ¼ 2m is the bifurcate cross-section of the event horizon of the blackhole. In

this work, we are chiefly interested in the ‘‘exterior region’’ defined by 2m < r < 1.

It will prove convenient to pass to and work with dimensionless coordinates ðs; q; h;/Þ defined by

2ms ¼ T ; 2mq ¼ r ð4Þ

(h and / are already dimensionless). After the rescaling ds2 7!ds2=ð4m2Þ, we may rewrite the line-element (3)

in the dimensionless form

ds2 ¼ �F ds2 þ F �1 dq2 þ q2 dh2 þ q2 sin2 hd/2; ð5Þ

where now F ðqÞ ¼ 1� 1=q so the unphysical singularity is located at q ¼ 1.

We also consider the outgoing and ingoing systems of Eddington–Finkelstein coordinates [45,46],

here in dimensionless form. To construct them, first introduce the Regge–Wheeler tortoise coordinate

[25,45]

q� ¼ qþ logðq� 1Þ: ð6Þ

Recall that this transformation is valid for 1 < q < 1 which corresponds to �1 < q� < 1, and that

q ! 1þ corresponds to q� ! �1. The characteristic coordinate l ¼ s� q� is the retarded time, and the set

ðl; q; h;/Þ is the outgoing Eddington–Finkelstein system. With respect to it, the line-element takes the form

ds2 ¼ �F dl2 � 2dldqþ q2 dh2 þ q2 sin2 hd/2: ð7Þ

In the ðl; q; h;/Þ system gqq ¼ 0, so that the vector field o=oq is characteristic or null, whereas in the

ðs; q; h;/Þ system gqq ¼ F �1ðqÞ, so that o=oq is spacelike on the exterior region. Level-l hypersurfaces are

characteristic and outgoing (cones opening towards the future) with o=oq as their generator.
2.1.2. Wave equation

The covariant d’Alembertian or wave equation associated with the diagonal line-element (5) is the

following:

1

�
� 1

q

��1
o2w
os2

� 1

q2

o

oq
q2 1

��
� 1

q

�
ow
oq

�
� DS2w

q2
¼ 0; ð8Þ

where DS2 is the Laplace operator (with negative eigenvalues) belonging to the unit-radius round sphere S2.

Notice that we use w for the wave field associated with the static time coordinate s (or associated with its

counterpart T ) introduced above, whereas in the introduction we have used U for the wave field. In the

follow-up article [2] we use U for the wave field associated with a certain time variable t related to ingoing

Eddington–Finkelstein coordinates. Our numerical work in [2] is based on t (which is why U and t, rather
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than w and T , appear in the introduction), but we do not consider U or t again in this article. For flat

spacetime T and t are the same, and so w and U are also formally the same for m ¼ 0.

Introducing the standard set Ylmðh;/Þ of basis functions for square-integrable functions on S2, we
consider an appropriate expansion

wðs; q; h;/Þ ¼
X
l;m

wlmðs; qÞYlmðh;/Þ ð9Þ

of the field w in terms of spherical-harmonic modes wlm. The spherical-harmonic transform of (8),

1

�
� 1

q

��1
o2wl

os2
� 1

q2

o

oq
q2 1

��
� 1

q

�
owl

oq

�
þ lðlþ 1Þwl

q2
¼ 0; ð10Þ

is the PDE governing the evolution of a generic mode wl. On wl we have suppressed the m, since it does not
appear in the PDE.

Addition of a single simple term to (10) yields a modified wave equation flexible enough to describe

either the mode evolution of an electromagnetic field Ab or the mode evolution of small gravitational

perturbations dgab on the Schwarzschild background. The modified equation is

1

�
� 1

q

��1
o2wl

os2
� 1

q2

o

oq
q2 1

��
� 1

q

�
owl

oq

�
þ lðlþ 1Þwl

q2
� |2wl

q3
¼ 0 ð11Þ

with the spin | ¼ 0; 1; 2 corresponding to scalar, electromagnetic, and gravitational radiation. We review the

history of this correspondence in the next paragraph. We may cast (11) in a particularly simple form via

simultaneous transformation of the independent and dependent variables. Indeed, setting Wl ¼ qwl and

here viewing o=oq� as shorthand for ð1� q�1Þo=oq, we rewrite (11) as follows:

o2Wl

os2
� o2Wl

oq2
�
þ V ðqÞWl ¼ 0: ð12Þ

The Regge–Wheeler potential

V ðqÞ ¼ 1

�
� 1

q

�
lðlþ 1Þ

q2

�
þ 1� |2

q3

�
ð13Þ

would depend only implicitly on q� where we using q� as the independent variable. As we will see in Section

2.2.3, the Laplace transform of (12) is important theoretically, since it elucidates the role of Laplace fre-

quency as a spectral parameter.

Wheeler derived the j ¼ 1 version of (12,13) in 1955 [24], showing that each of the two polarization states

for an electromagnetic field on the Schwarzschild geometry is described by one copy of the equation. Regge
and Wheeler [25] then derived the | ¼ 2 equation for odd-parity (or axially) gravitational perturbations in

1957, and Zerilli introduced a similar equation describing even-parity (or polar) gravitational perturbations

in 1970 [26]. In the 1970s Chandrasekhar and Detweiler demonstrated that the Zerilli equation can be

derived from (12), although the derivation involves differential operations (see [27] and references therein).

Adopting l as the time coordinate, we define ulðl; qÞ ¼ wlðlþ q�; qÞ and write (11) as

2
o2ul

oloq
þ 2

q
oul

ol
� 1

q2

o

oq
q2 1

��
� 1

q

�
oul

oq

�
þ lðlþ 1Þul

q2
� |2ul

q3
¼ 0: ð14Þ

Another way to obtain this wave equation is to form the d’Alembertian associated with (7) and then im-
plement a spherical-harmonic transformation. Similar to above, we may either set Ul ¼ qul or

Ulðl; qÞ ¼ Wlðlþ q�; qÞ, thereby expressing (12) as



Table 1

Wave fields and their relevance

Static time coordinate system ðs;qÞ Retarded time coordinate system ðl;qÞ

wlðs;qÞ ODE for L.t. is analogous to the

spherical Bessel equation

ulðl; qÞ | ¼ 0 ODE for L.t. is directly the

confluent Heun equation

Wlðs;qÞ ODE for L.t. elucidates role of r
as a spectral parameter

Ulðl;qÞ ODE for L.t. has outgoing solution

normalized at 1

L.t. stands for Laplace transform.

As we discuss in Section 2.2, via the Laplace transform we trade a PDE for an ODE.
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2
o2Ul

oloq�
� o2Ul

oq2
�
þ V ðqÞUl ¼ 0; ð15Þ

again viewing o=oq� as a shorthand. As we will see, for a given l the FDRK is built from the outgoing

solution to the formal Laplace transform of (15). Table 1 lists the wave fields we have introduced, and it

also briefly describes the theoretical importance of each field’s Laplace transform. The statements made in

the table are explained in Sections 2.2 and 2.3.

2.2. Laplace transform and radial wave equation

2.2.1. Laplace transform

The Schwarzschild geometry is static. 7 In turn, the variable coefficients of the linear wave equation

described in the last subsection do not depend on s, a scenario permitting study of the equation via the

technique of Laplace transform [47]. Let L denote the transform operation,

L½g�ðrÞ ¼
Z 1

0

e�rsgðsÞ ds: ð16Þ

Here we use r for the variable dual to s with respect to the Laplace transform. We may define a physical

variable s ¼ r=ð2mÞ, with dimensions of inverse length, which is dual to t and satisfies st ¼ rs. We may also

define a formal Laplace transformation on the retarded time l by replacing s with l in the last equation.

For the time being we proceed with the transformation on s.

2.2.2. Laplace transform of the wave equation

Let us formally compute the Laplace transform of (11), in order to get an ODE in the radial variable q.
We set ŵl ¼ L½wl� and assume that the initial data wlð0; qÞ and _wlð0; qÞ vanish in a neighborhood of q, as is
true for compactly supported data so long as we choose q large enough. This assumption ensures formally

that upon Laplace transformation we may replace s partial differentiation by r multiplication. Whence,

after some simple algebra we find

d2ŵl

dq2
þ 2q� 1

qðq� 1Þ
dŵl

dq
þ �r2q2

ðq� 1Þ2

"
� lðlþ 1Þ
qðq� 1Þ þ

|2

q2ðq� 1Þ

#
ŵl ¼ 0 ð17Þ

for the Laplace transform of (11).
7 More precisely, o=os is a hypersurface-orthogonal vector field which satisfies the Killing equation £o=osglm ¼ 0, where £ denotes Lie

differentiation.



S.R. Lau / Journal of Computational Physics 199 (2004) 376–422 385
It is instructive to see what happens to (17) in the m ! 0þ limit. Before taking the limit, first recall that

q ¼ ð2mÞ�1r and r ¼ 2ms, so that the product z ¼ rq ¼ sr is independent of m. With this in mind, we

divide the overall equation by a factor of r2 and find

d2ŵl

dz2
þ 2z� r
zðz� rÞ

dŵl

dz
þ �z2

ðz� rÞ2

"
� lðlþ 1Þ
zðz� rÞ þ

r|2

z2ðz� rÞ

#
ŵl ¼ 0; ð18Þ

where r is now shorthand for 2 ms. Formally then, the m ! 0þ limit along with multiplication by z2 sends
the last equation into the modified spherical Bessel equation (MSBE) [40]:

z2
d2ŵl

dz2
þ 2z

dŵl

dz
� z2
�

þ lðlþ 1Þ
�
ŵl ¼ 0: ð19Þ

As linearly independent solutions of the MSBE we could take

klðzÞ ¼
ffiffiffiffiffi
p
2z

r
Klþ1=2ðzÞ; ilðzÞ ¼

ffiffiffiffiffi
p
2z

r
Ilþ1=2ðzÞ; ð20Þ

where Klþ1=2ðzÞ, MacDonald’s function, and Ilþ1=2ðzÞ are standard modified (cylindrical) Bessel functions of

half-integer order [22].

2.2.3. Laplace frequency as a spectral parameter

We observe that

d2Ŵl

dq2
�
� V ðqÞŴl ¼ r2Ŵl ð21Þ

is the formal Laplace transform of (12). This is a remarkable form of the radial ODE for several reasons.

First, we could consider it in the context of an eigenvalue problem, although one in which the operator on
the LHS is not self-adjoint. More precisely, suppose we seek solutions to (21) which vanish at q ¼ qB (a

fixed constant) and are also asymptotically outgoing, that is behave as e�rq for large q. We do then (nu-

merically) find solutions corresponding to a discrete (but finite) set of r values, but these values lie in the

lefthalf plane. 8 For such r the term e�rq blows up as q gets large, spoiling any possible self-adjointness for

d2=dq2
� � V ðqÞ on ½qB;1Þ with these boundary conditions.

Let us also consider the Bessel analog of (21). Namely,

d2Ŵl

dq2
� lðlþ 1Þ

q2
Ŵl ¼ r2Ŵl: ð22Þ

We reach this equation by passing to z ¼ rq as above, taking the m ! 0þ limit, and then passing back to

q ¼ z=r. For the type of eigenvalue problem mentioned above, the operator d2=dq2 � lðlþ 1Þ=q2 is also not
self-adjoint, but this fact is not our prime concern now. The discussion in Section 2.2.2 shows that (22) has

solutions, such as ðrqÞ1=2Klþ1=2ðrqÞ, of a special form. Indeed, they simultaneously solve an ODE in the

spectral parameter r [48]

d2Ŵl

dr2
� lðlþ 1Þ

r2
Ŵl ¼ q2Ŵl: ð23Þ
8 The results of subsequent sections justify this statement, although in what follows we work with a different form of the ODE

stemming from yet another transformation Ŵl ¼ expð�rq�ÞÛl of the dependent variable. See Section 2.3.2 and what follows.
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Accordingly, we describe solutions to (22) as bispectral. Solutions to the more complicated ODE (21) are

not bispectral in this sense, and the lack of an associated differential equation in the parameter r com-

plicates our numerical investigations. More comments on this point follow in Section 3.1.2.

2.3. Normal and normalized form of the radial wave equation

2.3.1. Normal form

Standard analysis [49,50] of the ODE (17) shows that q ¼ 0 and q ¼ 1 are regular singular points,

corresponding respectively to indicial exponents �| and �r, whereas q ¼ 1 is an irregular singular point

[50]. To put (17) in a ‘‘normal form’’, we transform the dependent variable ŵl in order to (i) set one indicial

exponent to zero at each singular point and (ii) ‘‘peel-off’’ the essential singularity at infinity as best we can.
To this end, let us set

ŵl ¼ q|ðq� 1Þ�r
e�rqHl ¼ q|e�rq�Hl: ð24Þ

Our choice of peeling off expð�rqÞ indicates our intention to examine asymptotically outgoing radia-

tion fields. We have peeled off a factor of ðq� 1Þ�r
rather than ðq� 1Þr in order that the tortoise

coordinate appears in the argument of the exponential factor in the transformation. Eq. (17) then
becomes

d2Hl

dq2
þ
�
� 2rþ 1þ 2|

q
þ 1� 2r

q� 1

�
dHl

dq
þ �2rð1þ |Þ

q� 1

�
þ |ð|þ 1Þ � lðlþ 1Þ

qðq� 1Þ

�
Hl ¼ 0: ð25Þ

We remark that one may also obtain the | ¼ 0 version of (25) directly from (14) via formal Laplace

transform on the retarded time l, i. e. for | ¼ 0 we can say Hl ¼ ûl.
Eq. (25) is a realization of the (singly) confluent Heun equation [41,42]

d2G
dq2

þ b

�
þ c
q
þ d
q� 1

�
dG
dq

þ ab
q� 1

�
þ q
qðq� 1Þ

�
G ¼ 0; ð26Þ

which has the generalized Riemann scheme [42]

1 1 2

0 1 1 ; q
0 0 a ; q

1� c 1� d cþ d� a
0

�b

2
6666664

3
7777775
: ð27Þ

The first three columns of the scheme’s second row indicate singular-point locations, while the corre-

sponding columns of the first row indicate their types. That is to say, q ¼ 0 and q ¼ 1 are regular singular

points and1 is an irregular singular point which arises as the confluence of two regular singular points (the

2 in the third column indicates this confluence). Appendix B of [1] shows how the confluent Heun equation
arises from the Heun equation, an ODE similar to the hypergeometric equation, although possessing four

rather than three regular singular points. The remaining information in the first two columns specifies the

indicial exponents at the regular singular points, while that in the third column specifies the Thom�e ex-

ponents corresponding to the two normal solutions about the point at 1. These solutions have the as-

ymptotic behavior

Gþ � q�ae0�q; G� � q�c�dþae�bq; ð28Þ
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as q ! 1 (in some sector which we discuss later). Finally, in the fourth column we have the independent

variable q as well as the accessory parameter q. An ODE with the singularity structure of the confluent

Heun equation is determined by the indicial exponents belonging to the regular singularities along with the
Thom�e exponents only up to a free parameter q. See Appendix B of [1] for details.
2.3.2. Normalized form at infinity

Viewed as the confluent Heun equation, we see that our radial wave equation (25) has the following
generalized Riemann scheme:

1 1 2
0 1 1 ; q
0 0 1þ | ; |ð|þ 1Þ � lðlþ 1Þ

�2| 2r 1þ |� 2r
0

2r

2
6666664

3
7777775
; ð29Þ

showing that the normal solutions to (25) obey

Hþ
l � q�1�|e0�q; H�

l � q�1�|þ2re2rq; ð30Þ

as q ! 1. We may also write H�
l � q�1�| expð2rq�Þ for the large-q behavior of the second solution. The

scheme (27) shows that confluent Heun functions are generally specified by five parameters. However, our

specific scheme (29) corresponds to a two-parameter family of functions (those parameters being r and l,
with | viewed as fixed). This is comparable to the situation regarding the flatspace radial wave equation and

the associated one-parameter family of Bessel functions (that parameter being the Bessel order lþ 1=2).
Bessel functions (suitably transformed) are a one-parameter family within the larger two-parameter class of

confluent hypergeometric functions (which may also be represented as either Whittaker functions or

Coulomb wave functions) [51–53].

Numerical considerations below dictate that we work instead with an outgoing solution which is

‘‘normalized at infinity’’, that is to say approaches unity for large q. Therefore, we now enact the trans-

formation Hl ¼ q�1�|Ûl, or in terms of the original field ŵl ¼ q�1 expð�rq�ÞÛl, whereupon we find

d2Ûl

dq2
þ
�
� 2r� 1

q
þ 1� 2r

q� 1

�
dÛl

dq
þ 1� |2

q2

�
� 1� |2 þ lðlþ 1Þ

qðq� 1Þ

�
Ûl ¼ 0 ð31Þ

as the ODE satisfied by Ûl. Remarkably, this equation agrees with that obtained directly from (15) via

formal Laplace transform on the retarded time l, whence our choice Ûl with a hat for the dependent

variable here. We emphasize that this statement is true for all possible spin values (| ¼ 0; 1; 2), whereas the
identification Hl ¼ ûl mentioned before is valid only for j ¼ 0.

We again set z ¼ rq ¼ sr (independent of m) and divide (31) by an overall factor of r2, thereby reaching
the following particularly useful form of the radial wave equation:

d2Ûl

dz2
þ
�
� 2� 1

z
þ 1� 2r

z� r

�
dÛl

dz
þ 1� |2

z2

�
� 1� |2 þ lðlþ 1Þ

zðz� rÞ

�
Ûl ¼ 0: ð32Þ

With Wlðz; rÞ and Zlðz; rÞ respectively denoting the outgoing and ingoing solutions to this ODE, the cor-

responding solutions to (31) are Wlðrq; rÞ and Zlðrq; rÞ with r here viewed as fixed. As q ! 1 these obey

Wlðrq; rÞ � 1; Zlðrq; rÞ � e2rq� : ð33Þ

Respectively, we might also denote Wl and Zl by Ûþ
l and Û�

l .
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Recall that r ! 0 as m ! 0þ, whereas the product z ¼ rq remains fixed in the said limit. Therefore, in

the m ! 0þ limit Eq. (32) becomes an ODE

d2Ûl

dz2
� 2

dÛl

dz
� lðlþ 1Þ

z2
Ûl ¼ 0 ð34Þ

which could also be obtained straight from the MSBE (19) via the transformation ŵl ¼ z�1e�zÛl. In terms

of the two-parameter functions introduced above, Wlðz; 0Þ and Zlðz; 0Þ are respectively the formal outgoing
and ingoing solutions to (34). We shall also write these as simply WlðzÞ and ZlðzÞ when there is no cause for

confusion. A few examples may be illuminating. The first three outgoing solutions to the MSBE are the

following spherical MacDonald functions:

k0ðzÞ ¼
e�z

z
; k1ðzÞ ¼

e�z

z
1

�
þ 1

z

�
; k2ðzÞ ¼

e�z

z
1

�
þ 3

z
þ 3

z2

�
: ð35Þ

Now consider the following polynomials in inverse z:

W0ðzÞ ¼ 1; W1ðzÞ ¼ 1þ 1

z
; W2ðzÞ ¼ 1þ 3

z
þ 3

z2
: ð36Þ

From the discussion above we see that these are outgoing solutions to (34), and clearly ones which are

normalized at infinity. We shall see that outgoing solutions Wlðz; rÞ to (32) are similar, albeit not simple

polynomials in inverse z ¼ rq.

2.3.3. Asymptotic expansion for normalized form

For our purposes Eq. (32) will prove the most useful form of the frequency-space radial wave equation, so

let us describe its outgoing solution Wlðz; rÞ as a formal asymptotic series. Our discussion in Section 2.3.2

focused on the variable q, but the same normalization issues are pertinent for z. First, for convenience we set
j ¼ 1� |2; hence j takes the values 1; 0;�3 for scalar, electromagnetic, and gravitational cases, respectively.

Assume a solution to (32) taking the form

Wlðz; rÞ �
X1
n¼0

dnðrÞz�n; ð37Þ

demanding that d0ðrÞ ¼ 1. Of course the remaining dnðrÞ will in general also depend on l and j, but we
suppress this dependence here. Standard calculations then determine both d1ðrÞ ¼ lðlþ 1Þ=2 and the fol-
lowing three-term recursion relation:

dnþ1ðrÞ ¼
½lðlþ 1Þ � nðnþ 1Þ�dnðrÞ þ rðn2 þ j� 1Þdn�1ðrÞ

2ðnþ 1Þ : ð38Þ

A dominant balance argument shows the dnþ1ðrÞ=dnðrÞ ¼ OðnÞ, whence the series (37) is generally divergent

and only summable in the sense of an asymptotic expansion. Olver shows that the sector of validity for this

asymptotic expansion includes the entire z-plane (see Chapter 7 of [54]).
Set cn ¼ dnð0Þ. Sending r7!0 in (38) then yields the simple two-term recursion relation

cnþ1 ¼
½lðlþ 1Þ � nðnþ 1Þ�

2ðnþ 1Þ cn; ð39Þ

with solution (see [22, p. 202])

cn ¼
Cðlþ nþ 1Þ

2nn!Cðl� nþ 1Þ : ð40Þ
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When l is a positive integer, as is the case here, the series
P1

n¼0 cnz
�n truncates, so the solution WlðzÞ is a

polynomial of degree l in inverse z. All coefficients cn are positive and nonzero, and we can ultimately

conclude that all zeros of WlðzÞ lie in the lefthalf z-plane. Furthermore, the last nonzero coefficient is

cl ¼
Cð2lþ 1Þ

2ll!
; ð41Þ

and from this formula we may appeal to the asymptotic behavior of the gamma function (see [40, p. 486]) in

order to show

cl � CðlÞ2l
ffiffiffiffiffiffiffi
l=p

p
ð42Þ

as l becomes large.

2.4. Radiation outer boundary conditions

This section derives and discusses ROBC for a single spherical-harmonic mode wlmðs; qÞ, but we con-
tinue the practice of everywhere suppressing the subscript m. This section’s formulae are valid for all

possible spin values | ¼ 0; 1; 2; however, for concrete examples we choose | ¼ 0.

2.4.1. Derivation of the radiation kernel

Although we will now derive exact equations, let us define the radial computational domain to be (the

product of 2m and) the q interval ½1; qB�. The radial numerical mesh will be a discretization of this interval.

Now consider an infinite radial domain S defined by q > qmax, with qmax < qB. Let S0 denote the inter-

section of S� ½0;1Þ with an initial s ¼ 0 Cauchy surface. Assume that the initial data wlð0; qÞ and _wlð0; qÞ
are of compact support and, moreover, vanish on S0. The condition qmax < qB ensures that the domain edge

qB does not intersect the support of the initial data (see Fig. 2). Then the analysis of the last section es-

tablishes the formal expression

wlðs; qÞ ¼ L�1 alðrÞ
e�rq�Wlðrq; rÞ

q

�
þ blðrÞ

e�rq�Zlðrq; rÞ
q

�
ðsÞ ð43Þ
ρ = ρmax ρ = 1 ρ = ρmin ρ = ρB 

Fig. 2. Initial wave-packet configuration in the frequency domain. The undulations represent the initial data which is compactly

supported on ½qmin;qmax�. The domain S0 ¼ ðqmax;1Þ lies to the right of the data.
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as the general solution to the wave equation (11) on the history S� ½0;1Þ of S0. Here the coefficients alðrÞ
and blðrÞ are arbitrary functions analytic in the righthalf r-plane. Now, Zlðrq; rÞ � expð2rq�Þ as q ! 1,

showing that blðrÞ must be zero (for otherwise the solution is not asymptotically outgoing as expected for
an initial ‘‘wave packet’’ of compact support).

The solution within the computational domain is also obtained as above via inverse Laplace transform.

However, now the relevant frequency-space radial function solves the inhomogeneous version of (17), in

which case the source

ðq2 � qÞ�1Jlðq; rÞ ¼ �q2ðq� 1Þ�2 _wlð0; qÞ
h

þ rwlð0; qÞ
i

ð44Þ

replaces zero on the RHS of the equation, as is necessary for non-trivial initial data. This solution

appropriately matches alðrÞq�1e�rq�Wlðrq; rÞ at the largest radius qmax on which the data are sup-

ported. Let us further assume that the initial data are supported only on ½qmin; qmax�, where qmin > 1

(again, see Fig. 2). In this case, taking the second solution q�1 expð�rq�ÞZlðrq; rÞ as ingoing at the
horizon and using well-known methods associated with one-dimensional Green’s functions, one can

show that

alðrÞ /
Z qmax

qmin

expð�rqÞðq� 1Þ�rq�1Zlðrq; rÞJlðq; rÞ dq; ð45Þ

where the proportionality constant is determined by calculating the Wronskian of the two chosen linearly

independent solutions to the homogeneous equation [50].

Let us now derive the explicit form of the radiation kernel, assuming that we now work in the region

q > qB. Consistent with our presentation thus far, we denote by wlðs; qÞ the function satisfying

L½wl�ðr; qÞ ¼ ŵlðr; qÞ ¼ alðrÞq�1e�rq�Wlðrq; rÞ: ð46Þ

Differentiation of this formula by q then gives

oqŵlðr; qÞ ¼ r
W 0

l ðrq; rÞ
Wlðrq; rÞ

�
� r� r

q� 1
� 1

q

�
ŵlðr; qÞ; ð47Þ

with the prime denoting differentiation with respect to the first slot of Wlðz; rÞ. Next, we rearrange terms

and introduce some new symbols, thereby arriving at

rŵlðr; qÞ
NðqÞ þ oqŵlðr; qÞ

MðqÞ þ ŵlðr; qÞ
MðqÞq ¼ q�1NðqÞŵlðr; qÞ rq

W 0
l ðrq; rÞ

Wlðrq; rÞ

� �
; ð48Þ

where in terms of the function F ðqÞ appearing in the line-element (5) we have introduced the temporal lapse

function NðqÞ ¼ F 1=2ðqÞ and the radial lapse function MðqÞ ¼ F �1=2ðqÞ. The metrical function N describes

the proper-time separation between neighboring three-dimensional level-s hypersurfaces, whereas, in a

given such three-surface, M describes the proper-radial separation between neighboring concentric two-

spheres [28]. Inverse Laplace transformation of the last equation yields

1

N

owl

os
þ 1

M

owl

oq
þ wl

Mq
¼ q�1NðqÞwlðs; qÞ �L�1 rqB

W 0
l ðrqB; rÞ

WlðrqB; rÞ

� �
ðsÞ; ð49Þ

with � here indicating Laplace convolution (defined just below). On this equation we remark that the di-

rection N�1o=osþM�1o=oq is null and outgoing, whence the derivative of the field appearing on the LHS

is along a characteristic. The last equation holds in particular at qB, and as our ROBC we adopt the

following:
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1

N

owl

os

�
þ 1

M

owl

oq
þ wl

Mq

�����
q¼qB

¼ q�1
B NðqBÞ

Z s

0

xlðs� s0; qBÞwlðs0; qBÞ ds0; ð50Þ

where we have introduced the time-domain radiation kernel (TDRK)

xlðs; qBÞ ¼ L�1 rqB

W 0
l ðrqB; rÞ

WlðrqB; rÞ

� �
ðsÞ: ð51Þ

We refer to that appearing within the square brackets on the RHS as the frequency-domain radiation kernel

(FDRK), and we also denote it by

x̂lðr; qBÞ ¼ rqB

W 0
l ðrqB; rÞ

WlðrqB; rÞ
: ð52Þ

We assume that the FDRK x̂lðr; qBÞ has the appropriate r-decay necessary for a well-defined

xlðs; qBÞ ¼ L�1½x̂lðr; qBÞ�ðsÞ. Both xlðs; qBÞ and x̂lðr; qBÞ do of course depend on the values of l and qB

(and on the choice of spin |), but to avoid clutter we will sometimes suppress this dependence and write

simply xðsÞ and x̂ðrÞ. The ROBC could be written more simply in terms of Wl ¼ qwl.

2.4.2. Representation of the kernel

In Section 4 we undertake a fairly thorough numerical investigation of the analytic behavior of both

WlðrqB; rÞ and x̂lðr; qBÞ as functions of the complex variable r. As a result of our investigation, we

shall make the following conjectures regarding the FDRK x̂lðr; qBÞ. First, for l fixed x̂lðr; qBÞ is

analytic on C n ð�1; 0�, save for Nl ¼ NlðqBÞ 2 ZP 0 simple poles with locations frl;n ¼ rl;n

ðqBÞ : n ¼ 1; � � � ;Nlg lying in the lefthalf r-plane. Second, x̂lðr; qBÞ is bounded in a neighborhood of the

origin r ¼ 0. Third, Re x̂lðr; qBÞ is continuous and Im x̂lðr; qBÞ jumps by a sign across the branch cut

along the negative Re r axis. The integer NlðqBÞ is constant over sizable regions of the qB parameter
space. However, the pole locations rl;n do vary smoothly with respect to changes of qB, apparently

subject to

rl;nðqBÞ �
X1
k¼1

rl;n;kq
�k
B ; ð53Þ

where the rl;n;k are constants. This series is perhaps only summable as an asymptotic expansion, and we

have only numerically observed the first two terms.

Let us now define the nth pole strength and a cut profile respectively via

al;nðqBÞ ¼ �qBr
0
l;nðqBÞ; flðv; qBÞ ¼ Im x̂lðveip;qBÞ; ð54Þ

with vP 0 and the prime here standing for o=oqB differentiation. Like the pole locations, both of these

objects also vary with respect to changes of qB as indicated. As can be inferred from the third conjecture of
the last paragraph, it is the case that Im x̂lðve�ip; qBÞ ¼ �flðv; qBÞ. To give a concrete example, we choose

| ¼ 0, l ¼ 2, and qB ¼ 15, in which case we have numerically found that N2ð15Þ ¼ 2,

r2;nð15Þ ’ �0:0969� i0:0612, and a2;nð15Þ ’ �0:0936� i0:0647, for n ¼ 1ðþÞ and 2ð�Þ. For these pa-

rameter values the corresponding cut profile is shown in Fig. 3. The plot is typical in the sense that for all l
and qB considered here, flðv; qBÞ decays sharply in the v ! 0þ and v ! 1 limits (except for l ¼ 0 where the

decay in the v ! 0þ limit is not as sharp). However, the shape of the profile can be qualitatively different for

other parameter values. Moreover, for certain exceptional values of the parameters, the profile can even

blow up at a particular v point, in which case numerical evidence suggests that the integral in (55) is defined
in the sense of a Cauchy Principal Value. We discuss all of these issues in Section 4.1.
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Fig. 3. Typical cut profile. For this plot | ¼ 0, l ¼ 2, and qB ¼ 15.
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In terms of the pole locations and strengths and the cut profile, we claim that the FDRK has the rep-

resentation (suppressing qB dependence for now)

x̂lðrÞ ¼
XNl

n¼1

al;n
r� rl;n

� 1

p

Z 1

0

flðvÞ
rþ v

dv ð55Þ

for all r not equal to a rl;n and not lying on ð�1; 0�. Despite the right closed bracket here, we shall

also evaluate this representation at r ¼ 0. Given the described structure of the r-function x̂lðrÞ, the

derivation of such a representation amounts to a simple exercise involving the Residue Theorem and a

‘‘keyhole’’ contour. Although we will often described the second term on the RHS of (55) as corre-

sponding to a continuous set of poles, these are not really poles in the sense of complex analysis (which

are properly isolated singularities). Formally, we compute the inverse Laplace transform of (55), with

result

xlðsÞ ¼
XNl

n¼1

al;n expðrl;nsÞ �
1

p

Z 1

0

flðvÞ expð�vsÞ dv: ð56Þ

Evidently then, direct numerical construction of the FDRK would amount to numerical computation of the
pole locations and strengths and the cut profile. For l6 10 we consider such a direct construction in Section

4.2.

Section 1.2 of [2] shows how this brute-force approach may be bypassed insofar as implementation of

ROBC is concerned. The basic idea is to approximate the FDRK (55) by a proper rational function,

n̂lðrÞ ¼
Xd

n¼1

cl;n
r� bl;n

; ð57Þ



S.R. Lau / Journal of Computational Physics 199 (2004) 376–422 393
itself a sum of d discrete poles. Here we have suppressed the qB dependence of the rational function n̂lðrÞ as
well as that of the approximate pole strengths cl;n and locations bl;n. The approximation is tailored to have

relative supremum error e along the axis of imaginary Laplace frequency, that is

sup
y2R

n̂lðiyÞ � x̂lðiyÞ
��� ���

x̂lðiyÞ
��� ��� < e: ð58Þ

As shown in [1,2,19,55], when using the inverse Laplace transform nlðsÞ of n̂lðrÞ as an approximate TDRK,

e also turns out to be a relevant error measure in the time domain. It proves far more efficient, given a fixed

choice of accuracy e, to base an implementation of ROBC on (57) rather than (a discretization of) the actual

representation (55). The kernel compression algorithm [which produces the numbers cl;n and bl;n appearing
in (57)] is sketched in [19] and, in more detail, in [1,2,55].
2.4.3. Comparison with the Green’s function method

Any temptation to identify the pole locations rl;nðqBÞ in the representation (55) with so-called quasi-

normal modes [56] should be resisted. For a given l there are an infinite number of quasinormal modes [56],

fixed numerical values intrinsic to the blackhole geometry and certainly insensitive to any particular choice

of outer boundary radius qB. However, for qB > 1 the poles now under examination, that is the zeros in r of

the Heun-type function WlðrqB; rÞ, are finite in number, and they do depend on qB. Moreover, the
boundary value problem associated with these Heun zeros is different than the usual one associated with

quasinormal modes. This usual boundary value problem was considered in the pioneering work [38] of

Leaver, and more recently in a careful study by Andersson [39]. The goal of both authors was to examine a

given multipole field wlðs; qÞ ¼ q�1Wlðs; qÞ in terms of a Green’s function representation involving initial

data. Andersson refers to this as the initial value problem for the scalar field (or, more generally, for

electromagnetic or gravitational perturbations), although when we mentioned that name in the first par-

agraph of the introduction we did not have this Green’s function approach in mind. In Eq. (6) of [39],

Andersson expresses the scalar field as

Wlðs; q�Þ ¼
Z

Glðq�; q
0
�; sÞosWlð0; q�Þ dq0

� þ
Z

osGlðq�; q
0
�; sÞWlð0; q�Þ dq0

�: ð59Þ

In this equation we view the field Wl introduced in (32) as depending on q� (as Andersson does), and we

have also slightly modified Andersson’s notations to suit our own. The appropriate limits of q� integration

in (59) are discussed in [39]. This problem perhaps resembles our own; however, as we now demonstrate, it

is different both in concept and detail.

Both Leaver and Andersson considered the (here Laplace) transform of the Green’s function in (59), a

frequency-domain Green’s function Ĝlðq�; q
0
�; rÞ associated with the following boundary value problem.

The solution is pure ingoing at the horizon [Ŵ�
l ðr; q�Þ � expðrq�Þ as q� ! �1] and outgoing at infinity

[Ŵþ
l ðr; q�Þ � expð�rq�Þ as q� ! 1]. In fact, we briefly considered Ĝlðq�; q

0
�; rÞ in and around (45), al-

though we shall make no further use of it in this article or the follow-up article. Leaver and Andersson’s

approach was essentially to examine the value Wlðs; q�Þ, as expressed by (59), via a careful analysis of

Ĝlðq�; q
0
�;rÞ. (Of no concern here, Leaver further considered more general driving source terms beyond just

the initial data.) When Ĝlðq�; q
0
�; rÞ is considered as an analytic function of complex r and continued into

the lefthalf plane, its pole locations are the quasinormal modes and there is also an associated branch cut

along the negative Re r axis [38,39,57]. These complex analytic features play a prominent role in describing

the physical behavior of the field (see [38,39] and references therein).
Our key representation (55) stems from continuation into the lefthalf r-plane of the FDRK x̂lðr; qBÞ,

the expression (52) involving the logarithmic derivative of Wlðrq; rÞ ¼ expðrq�ÞŴþ
l ðr; qÞ. Here we again
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view Ŵl as depending on q, rather than q� as in the last paragraph. We stress that the FDRK x̂lðr; qBÞ is
not the Green’s function Ĝlðq�; q

0
�; rÞ considered by both Leaver and Andersson. Indeed, x̂lðr; qBÞ is a

boundary integral kernel. Moreover, it is built solely with the outgoing solution Ŵþ
l to the homogeneous

ODE, whereas construction of the Green’s function requires two linearly independent homogeneous so-

lutions, Ŵ�
l and Ŵþ

l . As mentioned, the pole locations associated with x̂lðr; qBÞ are not the quasinormal

modes, rather the special frequencies, finite in number, for which the outgoing solution Wlðrq; rÞ also

vanishes at qB. Despite the fact that Ĝlðq�; q
0
�; rÞ and x̂lðr; qBÞ are different integral kernels, we remark that

they share the same qualitative features in the lefthalf r-plane (each has poles and a branch cut).

On top of these technical differences between our work and those of Leaver and Andersson, we point out

that our overall goal is very different. As mentioned, their goal was to examine the actual value of the field

via the representation (59) based on spatial convolution. On the contrary, our boundary kernel xlðs; qBÞ is
associated with temporal convolution, with the goal being to impose exact radiation boundary conditions at

a given outer sphere B. That is to say, our goal is domain reduction via the introduction of integral con-

volution over the history 3B of the boundary B. With this distinction in mind, compare our key Eq. (50)

with Andersson’s key equation, as we have written it in (59). Perhaps the approach of Andersson and

Leaver could also be used to numerically implement exact radiation boundary conditions in an alternative

way [by setting q� ¼ qB þ logðqB � 1Þ in (59)], but they did not address this question per se. Moreover, such

an approach would necessarily relate ROBC to the details of the data on the initial surface, which would

seem awkward from a numerical standpoint. 9 Even were such an implementation carried out, memory and
speed issues would inevitably arise. Besides developing exact ROBC via domain reduction, we also intend

to provide an efficient and rapid implementation of these conditions. Although we do not do so until the

sequel article, we develop the numerical methods in this article with these goals in mind.
3. Numerical evaluation of the outgoing solution and kernel

This section describes the handful of numerical methods used in this work. The first subsection describes
a numerical method for evaluating the outgoing solution WlðrqB; rÞ at a given complex r, and this method

allows us to numerically study the analytic structure of WlðrqB; rÞ as a function of Laplace frequency. The

lefthalf r-plane is the domain of interest, and a study of WlðrqB; rÞ on this domain, carried out in Section

4.1, justifies the key representation (55). As we have mentioned at the end of Section 2.4.2, in the follow-up

article [2] we will consider numerical rational approximations to the FDRK x̂lðr; qBÞ which are tailored to

have small relative supremum error along the Im r axis. Such an approximation (57) is a compressed kernel,

and the crucial point is the following: the algorithm for compressing kernels takes as input accurate numerical

profiles for Re x̂lðiy; qBÞ and Im x̂lðiy; qBÞ where y 2 R. Therefore, insofar as implementation of ROBC is
concerned, we require numerical methods for obtaining these accurate numerical profiles. Section 3.2 de-

scribes two such methods. Although ultimately for use in the kernel compression algorithm found in the

follow-up article [2], in Section 4.2.2 these methods will also help check the representation (55).

Before describing our numerical methods, we note that Leaver has analytically represented a solution to

the Regge–Wheeler equation (more generally to the generalized spheroidal wave equation) as an infinite

series in Coulomb wave functions, where the expansion coefficients obey a three-term recursion relation

[44]. Such a series can alternatively be viewed as a sum of confluent hypergeometric functions. One ap-

proach towards our goal of numerically evaluating the outgoing solution would be to use the appropriate
Leaver series. However, beyond the issue of numerically solving the relevant three-term recursion relation,
9 We are definitely not critical of the most excellent works of Leaver and Andersson. Indeed, just as their Green’s function technique

would seem not the best way to implement ROBC, we do not believe we could directly reproduce their results with our boundary kernel

technique.
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numerical evaluation of Coloumb wave functions (for complex arguments) is already somewhat tricky [53].

Here we describe far simpler methods, which are nevertheless extremely accurate. Although simple, our

methods are very accurate only for a limited range of frequencies (which happen to be precisely the fre-
quencies we are interested in). The Leaver series is valid over the whole frequency plane. Although we have

not compared our methods with the Leaver series, we believe they are better suited for our purposes.

3.1. Numerical evaluation of the outgoing solution

From now on let us simply refer to WlðrqB; rÞ as a Heun function and WlðrqBÞ as a Bessel function. This

is not quite correct since, as discussed in Section 2.3.2, WlðrqB; rÞ and WlðrqBÞ respectively differ from Heun

and Bessel functions by transformations on the dependent variable; however, this terminology will
streamline our presentation. We now present numerical methods for computing the complex value

WlðrqB; rÞ. The methods have been designed to successfully compute the similar value WlðrqBÞ, formally

WlðrqB; 0Þ in our notation. WlðrqÞ solves the ODE

d2Ûl

dq2
� 2r

dÛ
dq

� lðlþ 1Þ
q2

Û ¼ 0 ð60Þ

obtained directly from (34) via the substitution z ¼ rq. Section 2.3.3 noted that WlðrqÞ is a polynomialPl
n¼0 cnðrqÞ

�n
of degree l in inverse rq, with coefficients cn given in (40). With the exact form of WlðrqÞ we

could in principle compute the value WlðrqBÞ directly. 10 Nevertheless, if we pretend that the exact form of

WlðrqÞ is not at our disposal, then the task of numerically computing WlðrqBÞ shares essential features with
our ultimate task of computing WlðrqB; rÞ. The task of computing WlðrqBÞ has been an invaluable model,

and for ease of presentation we mostly focus on it here.

3.1.1. Numerical integration

Focusing on the q-dependence of the solution, we write WlðrqÞ ¼
Pl

n¼0ðcnr�nÞq�n. Since we shall not

allow ourselves to evaluate WlðrqBÞ as
Pl

n¼0ðcnr�nÞq�n
B , we truncate the series after some fixed number l� p

of terms, assuming that

WlðrqÞ �
Xl�p

n¼0

ðcnr�nÞq�n ð61Þ

is at our disposal. Truncation by hand of this already finite series serves as a model for the scenario in-

volving Wlðrq; rÞ, where only a divergent formal series, such as the one specified by (37) and (38), is at our

disposal. With our truncated series we can still generate an accurate approximation to the value Wlðrq1Þ, so
long as q1 is large enough. Let us set q1 ¼ scale � qB, with scale a large number. Evaluation of the

truncated sum and its q derivative at q1 then generates initial data for the ODE. Moreover, the generated

data are approximate to the exact data fWlðrq1Þ;W q
l ðrq1Þg giving rise to WlðrqÞ. Here the superscript q

denotes o=oq differentiation, whereas a prime 0 would denote differentiation in argument. We stress that our
approximation to the exact data can be rendered arbitrarily accurate by choosing q1 large enough. Finally,

we numerically integrate (60) in q from q1 to qB, thereby computing a candidate for the value WlðrqBÞ.
As it stands, the description in the last paragraph is an outline for a stable numerical method, provided

Re r > 0. However, for the case Re r < 0 of interest the described method is not stable. To see why,

consider the l ¼ 1 outgoing solution W1ðrqÞ ¼ 1þ ðrqÞ�1
to (60). As a second linearly independent solution

to the l ¼ 1 ODE, take the ingoing solution Z1ðrqÞ ¼ expð2rqÞ½1� ðrqÞ�1�. Further, suppose that initial
10 Due to the growth (42) of the Bessel coefficients, such direct computation is plagued by increasing loss of accuracy as l grows.
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data for the ODE are obtained from a truncated sum as described above, with f1; 0g in place of exact data

f1þ ðrq1Þ
�1
;�rðrq1Þ

�2g. The initial data f1; 0g correspond to a linear combination aW1ðrqÞ þ bZ1ðrqÞ
with a ’ 1 and b such that bZ1ðrq1Þ ’ 0. To fix some realistic numbers, let qB ¼ 20, scale ¼ 250 so
q1 ¼ 5000, and r ¼ �0:05. Then we compute a ’ 1:0040 and bZ1ðrq1Þ ’ 8:0320� 10�6, where

b ’ 1:1229� 10212. The exact value we wish to calculate is W1ð�1Þ ¼ 0. However, with the chosen initial

data, even an exact integration of (60) from q1 ¼ 5000 to qB ¼ 20 yields the value 3:0393� 10211. Since

error in the initial conditions is exponentially enhanced, the second solution Z1ð�0:05qÞ dominates as q is

decreased.

3.1.2. Two-component path integration

The simple discussion at hand suggests that we should complexify the variable q, rotating q1 off the real
axis by an angle h large enough to ensure that the product rq1 lies in the righthalf plane. Then integration

along a ray in the complex q-plane from q1 towards the complex point expðihÞqB (with qB still real here)

would exponentially suppress error in the initial conditions. At the end of such a ray integration, a second

integration over an arc of h radians would be needed to undo the phase of expðihÞqB. We effect such a

rotation of the q coordinate as follows. We choose to work with the variable z ¼ rq, the solution WlðzÞ, and
the truncated series

Pl�p
n¼0 cnz

�n. Our integration will now be carried out in the complex z-plane rather than
the q-plane, although the strategy is essentially the same. We define z1 to be a large real number

scale � jrqBj, and obtain initial data approximate to fWlðz1Þ;W 0
l ðz1Þg via evaluation of the truncated

series and its z derivative at z1. Even for large l we have typically chosen l� p ¼ 5 terms to define the

truncated series. Then to compute WlðrqBÞ, we must numerically integrate the ODE (34) from z1 to

zB ¼ rqB along some path in the complex z-plane. A possible two-component path is shown in Fig. 4. It is

composed of a straight ray followed by a circular arc, with the terminal point of the ray being the real z-
point jrqBj. The arc subtends an angle equal to the argument of r. If r happens to lie in the third quadrant,

then the relevant two-component path looks like the one in Fig. 4 except reflected across the Re z axis.
Evaluation of the Heun function WlðrqB; rÞ features numerical integration of the ODE (32) from z1 to

zB ¼ rqB along the same two-component path. Although z of course changes along the integration path, the
r in Wlðz; rÞ remains fixed throughout the integration. We are then integrating a different ODE for each

value of r. Since these Heun functions are not bispectral (see the discussion in Section 2.2.3), there would

seem no way around such a cumbersome approach. Were we only interested in WlðrqBÞ, and not WlðrqB; rÞ
as well, such an approach would be unnecessary (for then we could integrate with respect to frequency r).
In essence our two-component path method for evaluation of either WlðrqBÞ or WlðrqB; rÞ is an integration

with respect to radius rather than frequency. Indeed, even for the Bessel case, we connect each zB to the

point z1 by its own integration path, and during the integration do not record values for WlðzÞ along the
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Fig. 4. Two-component path in z-plane. The figure depicts the ray-and-arc path described in the text. Here we have qB ¼ 20,

r ¼ �1þ i, and scale ¼ 4, so that zB ¼ �20þ i20 (marked by ans) and z1 ¼ 4 � 20 �
ffiffiffi
2

p
’ 113 (marked by an ·). Typically scale

will be much larger, but the value here makes for a good figure.
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path. Recording such values throughout the integration would be a more efficient way of mapping out the r
dependence of WlðrqBÞ.

Let us note two key features of two-component paths. First, for any choice of zB 6¼ 0 the associated path
avoids the origin where the function WlðzÞ is singular. Second, considering two terminal points, one zaB just

above and the other zbB just below the negative real axis, we note that the respective two-component paths

connecting them to z1 are mirror images, as depicted in Fig. 5. Therefore, the path leading from z1 to zaB is

globally different than the path leading from z1 to zbB, this being true despite the fact that zaB and zbB may lie

arbitrarily close to each other in the z-plane. For l 2 ZP0 the functions WlðzÞ are clearly analytic on the

punctured z-plane, so that WlðzaBÞ ¼ WlðzbBÞ in the limit that these points meet on the negative Re z axis.

However, for Heun functions we shall find WlðzaB; raÞ 6¼ WlðzbB; rbÞ, and in turn WlðraqB; r
aÞ 6¼ WlðrbqB; r

bÞ,
for corresponding ra ¼ zaB=qB and rb ¼ zbB=qB. Therefore, the negative Re r axis is a branch cut for
WlðrqB; rÞ as a function of r. Our path choices for connecting points in the second and third quadrants to

z1 put this branch cut on the negative Re r axis.

As we demonstrate below, the described two-component path method is quite accurate for low l.
However, for large l and some values of r there is a considerable loss of precision associated with eval-

uating WlðrqBÞ by this method (this is true no matter what integration scheme is used along the path

components). Therefore, we shortly introduce a more accurate method based on one-component paths.

Before turning to the improved method, let us first heuristically describe the trouble the two-component

method can run into for large l. In Fig. 6 we graphically demonstrate the breakdown in the method which
occurs (for the specified parameter values) when l gets beyond 70. The relevant task under consideration is

to obtain WlðrqBÞ in a region around those zeros of WlðrqBÞ which have large negative real parts. On the

LHS we plot log jW70ð15rÞj, using the logarithm to distribute contour lines more evenly. For the portion of

the r-plane shown only two of seventy zero locations are evident. Note the onset of degradation in the

numerical solution. On the RHS we plot log jW74ð15rÞj, and in the plot two of 74 zero locations are

somewhat evident, despite significant degradation. This degradation stems from the following phenomena.

Although they do avoid the origin, two-component integration paths, especially those which terminate near

a zero with large negative real part, tend to pass through a region near the origin where the solution is quite
large. The phenomena become more pronounced as l grows. Two-component paths connect z1 (where the

solution is of order unity) to zB (which might be at or near a zero of the solution in question), and at each of

these points the solution is in some sense small. Therefore, loss of accuracy is an issue if the connecting path

indeed passes through a large-solution region. We document an instance of this situation in Fig. 7.
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Fig. 5. Mirror image paths. The figure depicts the two globally different paths connecting z1 to z-points above and below the negative

Re z axis. Use of such different paths puts a branch cut on the negative Re z axis for Heun functions and for Bessel functions not of

half-integer order.
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Fig. 6. Contour lines of log jWlð15rÞj on r-plane for l ¼ 70 and 74. On the LHS we plot log jW70ð15rÞj. The method used to generate

this plot is the one based on two-component paths, and the integration scheme along each path component is fifth-order Runga–

Kutta–Fehlberg [58]. Relevant parameters here are I ¼ 50, J ¼ 50, N ¼ 49152,M ¼ 49152, l ¼ 70, qB ¼ 15, scale ¼ 500, p ¼ 65, and

j ¼ 1. I and J respectively specify the vertical and horizontal discretization of the r-plane. N and M are respectively the number of

integration steps along the ray and arc. Other parameters are described in the text. On the RHS l ¼ 74 rather than 70 and p ¼ 69 rather

than 65 (the initial condition is still determined by 5 ¼ l� p terms). All other parameters are the same as for the LHS plot.
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3.1.3. One-component path integration

We now describe an alternative class of integration paths tailored to mitigate the problem of passing

through regions where the solution is large. Members of this alternative class are one-component paths, and

this new class yields an improved version of the integration method based the two-component paths. As the

new method will be more accurate, we will use it to quantify the accuracy of the two-component method.

The one-component paths of interest are essentially dilations of a certain curve C depicted in Fig. 8. A

parametric description of C in terms of transcendental functions is given in the figure caption. The curve C
is intimately related to the zeros of WlðzÞ, also the zeros of the MacDonald function Klþ1=2ðzÞ. As a degree-l
polynomial in inverse z, the function WlðzÞ has l zeros. Let n 2 ZP0 run from 1 to l (with n ¼ 0 if l ¼ 0) and

kl;n denote the zeros of WlðzÞ. It is known that the scaled zeros ðlþ 1=2Þ�1kl;n lie arbitrarily close to C as l
becomes large (see results listed or summarized in [19,22,54,55]). Therefore, for a given l, dilation of C by

lþ 1=2 yields a curve on which the solution WlðzÞ tends to remain small. Our one-component integration

paths are quartic approximations to (dilations of) C, and an example is depicted in Fig. 9. The approxi-

mation is given parametrically by RðgðgÞ; gÞ, where R is fixed and gðgÞ ¼ ag4 þ bg2 þ c is a quartic poly-

nomial such that upon multiplication by R the C points ð0;�1Þ, ðx1;�y1Þ, and ðx0; 0Þ all lie on the

parametric approximation. We have x1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðe2 þ 1Þ

p
, y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðe2 � 1Þ

p
, and x0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � 1

q
with

k0 ’ 1:1997 obeying tanhðk0Þ ¼ 1=k0. From the parametric description of C given in the caption of Fig. 8,

one may verify that each of these points indeed lies on C. Numerically then a ’ 0:1534, b ’ 0:5093, and
c ’ �0:6627.

We repeat the graphical investigation described and carried out at the end of Section 3.1.2, but now with

the one-component method. The relevant contour plots of log jW70ð15rÞj and log jW74ð15rÞj are shown in

Fig. 10. Comparing this set of plots with the corresponding set in Fig. 6, we see significantly less degradation
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in former set. Moreover, we again investigate the size of the solution along an integration path in Fig. 11.

These figures and their captions argue that the method based on one-component paths is more accurate than

the one based on two-component paths, at least insofar as zero-finding is concerned.

3.1.4. Accuracy of the numerical evaluation

To check the accuracy of our methods for evaluating either WlðrqB; rÞ or WlðrqBÞ we may compare

values obtained independently from one-component path and two-component path integration. For the

evaluation of WlðrqBÞ there are other checks. First, numerical values for WlðrqBÞ can be checked against
direct evaluations of

Pl
n¼0 cnðrqBÞ

�n
. However, as we have seen in (42), for large l the final coefficient cl and

the ones just before it quickly become too large to faithfully evaluate this exact expression. One can use

extended precision (say in MATHEMATICAMATHEMATICA) to get around this problem. Another check, useful for large l
even without extended precision, involves the known continued fraction expansion

z
W 0

l ðzÞ
WlðzÞ

¼ � lðlþ 1Þ
2ðzþ 1Þþ

ðl� 1Þðlþ 2Þ
2ðzþ 2Þþ � � � 2ð2l� 1Þ

2ðzþ l� 1Þþ
2l

2ðzþ lÞ : ð62Þ

This formula follows from recurrence relations obeyed by MacDonald functions [22]. It remains valid for

non-integer l; however, in this case the RHS of the equation is an infinite continued fraction. Lenz’s

method may be used to evaluate this continued fraction for any l (see the appendix of [53]). Now, both of
our integration methods also return the derivative W 0

l ðzBÞ in addition to WlðzBÞ. To see why, let

W ¼ U þ iV (suppressing the argument and l). In order to integrate the second-order ODE (34) for the

complex variable W , we switch to a first-order system of ODE for the real vector ðUH;U ; V ; V HÞ. The H
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Fig. 8. Asymptotic curve C. The curve is the one described in the text and has parametric form zðkÞ ¼
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for k in the domain ½0; k0� with k0 ’ 1:1997 such that tanh k0 ¼ 1=k0. We also plot scaled zeros

ðlþ 1=2Þ�1kl;n for l ¼ 1; 2; 3; 4. The cross is the scaled zero of K1=2ðzÞ, the diamonds are the scaled zeros of K3=2ðzÞ, the circles are the
scaled zeros of K5=2ðzÞ, and the stars are the scaled zeros of K7=2ðzÞ. To the eye these zeros, corresponding as they do to small l values,

already lie close to the curve C.
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Fig. 9. One-component path. To generate the depicted curve we have set R ’ 38:7479 and chosen g from the range

0:5162K gK 1:8650, ensuring that the terminal point zB ¼ 20þ i20 and the initial point z1 ’ 113þ i72 (comparable with the anal-

ogous point in Fig. 4). For one-component paths the meaning of the scale variable is a little different. For such paths the real

component of z1 is set by R � scale.
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denotes differentiation with respect to any relevant path parameter. With knowledge of UH and V H and

the Cauchy–Riemann equations, one can recover W 0. Therefore, both the one-component and two-
component path methods may also be used to evaluate zBW 0

l ðzBÞ=WlðzBÞ, and this value can then be
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Fig. 10. Contour lines of log jWlð15rÞj on r-plane for l ¼ 70 and 74. On the LHS we have plotted log jW70ð15rÞj. The method used to

generate the plot is the one based on the one-component paths, again with Runga–Kutta–Fehlberg integration. Relevant parameters

here are I ¼ 50, J ¼ 50, P¼ 98,304, l ¼ 70, qB ¼ 15, scale ¼ 500, p ¼ 65, and j ¼ 1. P is the number of subintervals for the nu-

merical integration. Other parameters are described in the text or the caption for Fig. 6. The plot on the RHS is nearly the same, except

that now l ¼ 74 and p ¼ 69 (i.e. the initial condition still determined by 5 ¼ l� p terms). All other parameters are the same as for the

LHS plot.
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checked against the continued fraction (62) evaluated at zB. In this context, notice that the zeros in r of

the reciprocal WlðrqBÞ=ðrqBW
0
l ðrqBÞÞ are also the zeros of WlðrqBÞ, owing to the fact that the zeros of the

MacDonald function are simple [22]. Appealing to the above checks, we find that even the inferior nu-

merical method based on two-component paths is quite accurate for l6 10; and we offer the following
concrete investigations to sharpen this statement. 11

Accuracy in zero-finding. The function W10ð15rÞ has 10 zeros, which come in five complex-conjugate

pairs. Using the secant algorithm, we compute the five zeros with positive imaginary parts via our two

independent methods. Note that whether the one-component or two-component path method is used, each

function call in the secant algorithm involves a numerical integration. The results, listed in Table 2, indicate

that for low l the two-component path method is associated with absolute errors equal to or better than

10�12, at least insofar as zero-finding is concerned. 12 We reach the same conclusion upon computing the

zeros of the Heun function W10ð15r; rÞ via the two methods. This is remarkable in that there is no a priori

relationship between the asymptotic curve C and the zeros in r of the Heun function WlðrqB; rÞ. However,

carrying out the same graphical experiments for Heun functions that we carried out for Bessel functions

and documented in Figs. 7 and 11, we again find that the one-component path method is better than the

two-component path method at keeping the solution small during the integration. Numerical experiments

described in Section 4.1.1 further clarify this issue.
11 We remark that these accuracy checks test our methods where we need them most, that is on those tasks necessary for a numerical

construction the kernel via the representation (55).
12 Computing the same zeros in extended precision with MATHEMATICAMATHEMATICA, we have checked that the one-component path method

yields the zeros with absolute errors near 10�15.
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Fig. 11. Value of log10 jW74ðzÞj along one-component path from z1 to zB ¼ 15r for r ¼ �3:29128þ i0:05785. The point

�3:29128þ i0:05785 is close to a zero of W74ð15rÞ and lies in the region of the r-plane shown in Fig. 10. Along the horizontal axis we

have the P¼ 98,304 integration steps. Note that the modulus of W74ðzÞ never gets so large as it does in Fig. 7.

Table 2

Zeros of W10ð15rÞ computed via two different methods

�0:461469660361894þ i0:057844346363414

�0:441019397698505þ i0:174104528053357

�0:397835221905874þ i0:292329812596140

�0:325747971123938þ i0:414999032164771

�0:207261082243274þ i0:548846630604906

�0:461469660361817þ i0:057844346363415

�0:441019397698458þ i0:174104528053339

�0:397835221905853þ i0:292329812596129

�0:325747971123933þ i0:414999032164771

�0:207261082243273þ i0:548846630604906

In the top table we list five of the 10 zeros (the other five are complex conjugates). These have been found using the two-component

path method in tandem with the secant algorithm. In the second table we list the same zeros, now found using the one-component path

method with the secant algorithm.
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Accuracy in the cut profile. As applied to the Heun case, both the two-component and one-component

path methods also return W 0
l ðrqB; rÞ. This can be seen via argumentation similar to that given above in the

context of the real vector ðUH;U ; V ; V HÞ. Therefore, we have two independent methods for calculating

rqBW
0
l ðrqB; rÞ=WlðrqB; rÞ, where r may be chosen pure real and negative (say with the convention that all

paths approach the negative Re r axis running through the second quadrant). That is to say, each of our

methods may be used to evaluate the cut profile

flðv; qBÞ ¼ Im eipvqBW
0
l ðeipvqB; e

ipvÞ=WlðeipvqB; e
ipvÞ

� �
: ð63Þ
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Fig. 12. Absolute error in the cut profile f2ðv; 15Þ. Here we plot the difference Df2ðv; 15Þ of two numerical computations of f2ðv; 15Þ,
one based on the two-component path method and the other on the one-component path method. For the two-component method we

have N¼ 131,072¼M, while for the one-component method P¼ 262,144. Parameters common to both computations are j ¼ 1,

scale ¼ 1000 and p ¼ �3 so l� p ¼ 5. There are 512 v-subintervals in the plot.
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Using each method to obtain its own numerical graph for the profile f2ðv; 15Þ shown in Fig. 3 of

Section 2.4.2, we then plot the difference of these graphs in Fig. 12. Similar graphs for other values of

l6 10 indicate that the two-component path method evaluates the maximum value of jflðv; 15Þj with
an absolute error better than 10�10. For the following reasons we believe that the one-component path
method computes this maximum with an even smaller absolute error. The essential support of

jflðv; 15Þj corresponds to a region of the r plane near those zeros of WlðrqB; rÞ with largest negative

real part. Therefore, in connecting z1 to a purely real zB ¼ expðipÞvqB on the cut, a one-component

path runs all the way near (a dilation of) C, indicating that the numerical solution along such a one-

component path again tends to remain small. Experiments like those documented in Figs. 7 and 11

confirm this expectation.

We will mainly use the described integration methods for small l6 10. However, we note that via

comparison with both the continued fraction expression and extended precision calculations in MATH-MATH-

EMATICAEMATICA, we believe that our one-component path method maintains single precision accuracy up to

about l ¼ 50, at least insofar as zero-finding is concerned. Finally, we mention that we have carried out all

integration using the Runga–Kutta–Fehlburg scheme with fixed step-size along individual path compo-

nents. In light of the sufficient accuracy noted here and the next subsection, we have not found it necessary

to introduce any sort of adaptive integration. Furthermore, we have not found the local truncation error

estimate (stemming from comparison between the fourth- and fifth-order integration schemes) provided by

Runga–Kutta–Fehlburg to be a useful diagnostic for our purposes. Relying on our own accuracy checks,

we have simply used the straight explicit fifth-order scheme.
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3.2. Numerical evaluation of the radiation kernel

The numerical methods discussed in the last subsection work well for values of l6 10, and via (55) will
allow us to directly construct sufficiently accurate sum-of-poles representations of the FDRK. Moreover,

even for moderately large l these methods prove useful in qualitative investigations of the outgoing solu-

tion’s analytic structure. However, when it comes to building an accurate sum-of-pole representation of the

FDRK for high l, the described methods lack the necessary accuracy.

In this subsection we describe different methods for direct evaluation of the radiation kernel itself along

the Im r axis, ones sufficiently accurate even for high l. Given accurate profiles for the real and imaginary

parts of the radiation kernel along this axis, we may then extract an accurate sum-of-poles representation

via a method described in detail in Section 1.2 of [2] and due to [19]. Here we described two methods for
evaluating x̂lðr; qBÞ when r is pure imaginary, one accurate so long as jrj 	 0 and the other so long as

0 6¼ jrjK 1. There is some interval of overlap on the Im r axis on which both methods are accurate and may

be compared. We warn the reader that we also use the notation x̂lðr; qBÞ for the Bessel FDRK

rqBW
0
l ðrqBÞ=WlðrqBÞ. In order to avoid the confusion which might arise from this dual meaning of the

symbol x̂lðr; qBÞ, in this subsection we sometimes adopt the following notation. For the product of z with
the Heun logarithmic derivative we may use

wlðz; rÞ ¼ zW 0
l ðz; rÞ=Wlðz; rÞ; ð64Þ

while for the corresponding Bessel object we may use

wlðzÞ ¼ zW 0
l ðzÞ=WlðzÞ: ð65Þ

Formally wlðzÞ ¼ wlðz; 0Þ, in parallel with conventions in Section 2.3.2. For the Heun case

x̂lðr; qBÞ ¼ wlðrqB; rÞ, while for the Bessel case x̂lðr; qBÞ ¼ wlðrqBÞ.

3.2.1. Evaluation of the kernel for large imaginary frequencies

We turn first to the evaluation of x̂lðr; qBÞ for r 2 iR and jrj 	 0. For the remainder of this subsection

r ¼ iy for real y. In this scenario we find it useful to again work with the complex variable z ¼ rq. As before,
for a given r the terminal evaluation point will be denoted by zB ¼ rqB, and it lies on the Im z axis. Consider
two positive real numbers scale1 > scale2 and associated z-points z1 ¼ scale1 þ zB and

z2 ¼ scale2 þ zB. The point z1 is analogous to the point z1 introduced before. Further consider a straight

path like the one shown in Fig. 13 running through all of these points. Let us now outline the method for

obtaining the value x̂lðzB=qB; qBÞ, mostly considering only the model Bessel case to streamline the presen-

tation. First, using the truncated series
Pl�p

n¼0 cnz
�n
1 , we compute initial values for the ODE (34). Next, we

integrate the ODE along the straight path from z1 to z2 (the first portion of the path in Fig. 13). As Re z > 0

along this path, we again have exponential suppression of errors both in the initial conditions and due to
roundoff. The result of this integration is accurate numerical values for Wlðz2Þ andW 0

l ðz2Þ, from which we can

directly build a numerical value for the kernel z2W 0
l ðz2Þ=Wlðz2Þ at this intermediary point. The assumption

here is that z2 is still large enough in modulus to ensure that the solution Wlðz2Þ is not too large. Finally, we

integrate the radiation kernel itself along the straight path from z2 to zB, carrying this out as follows.

Whether we are working with (32) or (34), we have an ODE of the form

d2Ûl

dz2
þ Rðz; rÞ dÛl

dz
þ Sðz; rÞÛl ¼ 0; ð66Þ

so that both wlðzÞ and wlðz; rÞ obey a first-order nonlinear ODE of the form

dwl

dz
� wl

z
þ w2

l

z
þ Rðz; rÞwl þ zSðz; rÞ ¼ 0: ð67Þ
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Fig. 13. Two-component path in z-plane. The figure depicts a straight path of the type described in the text. Here we have qB ¼ 20,

r ¼ i, scale1 ¼ 20, and scale2 ¼ 40, so that the points z1, z2 and zB respectively correspond to the marked cross, square, and circle.

Typically scale1 and scale2 will be much larger, but the values here make for a good figure.
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Weuse the same symbolwl as the dependent variable here, since as a first-order ODE there is only one linearly

independent solution. With the accurate value for wlðz2Þ at our disposal at the end of the first integration leg,

we integrate this last ODE from z2 to the terminal value zB (the second portion of the path in Fig. 13) in order

to obtain the desired complex value wlðzBÞ ¼ zBW 0
l ðzBÞ=WlðzBÞ. For the Heun case Eq. (67) is an ODE for

wlðz; rÞ ¼ zW 0
l ðz; rÞ=Wlðz; rÞ, and it is again integrated from z2 to zB, given an accurate value for wlðz2; rÞ.

The method just described is unstable if the terminal point zB lies too close to the origin. Indeed, notice

that some of the terms in the ODE (67) are singular at the origin, showing that finiteness of the kernel

derivative at the origin depends on exact cancellation of singular terms. Round off error will spoil any such

exact cancellation in an integration towards a terminal zB equal to or near zero. Later we demonstrate that

the value x̂lð0; qBÞ of the kernel at the origin can be computed in closed form for both Bessel and Heun

cases. This raises the possibility that the value wlðzBÞ – or in the Heun case the value wlðzB; rÞ – corre-

sponding to a non-zero jzBj 
 1 might be numerically computed via integration of (67) out from the origin.
However, as discussed in [1] this seems not a viable approach.

3.2.2. Evaluation of the kernel for small imaginary frequencies

For the reasons just laid down, we use a different method for small non-zero imaginary r. The newmethod

employs integration in the complex q-plane rather than the z-plane. We introduce new positive real numbers

scale1 > scale2 > qB, a phase factor expðihÞ, and the following associated q-points (all in polar form):

q1 ¼ scale1 � expðihÞ, q2 ¼ scale2 � expðihÞ, q3 ¼ qB expðihÞ, and qB. These points define a three-

component path in the q-plane such as the one shown in Fig. 14. Let us now outline the new method for
computing the value x̂lðr; qBÞ, again mostly considering only the model Bessel case to streamline the pre-

sentation. First, using the asymptotic expansion (61), we compute initial values for the ODE (60). Next, we

integrate (60) along the straight ray from q1 to q2 (the first portion of the path in Fig. 14). We choose the

angle h such that Re ðrqÞ > 0 along this path, ensuring exponential suppression of errors both in the initial

conditions and due to roundoff. The result of this integration is accurate numerical values for Wlðrq2Þ and
W q

l ðrq2Þ, from which we can directly build a numerical value for wlðrq2Þ at the intermediary point q2.

Similar to before, the assumption here is that q2 is large enough in modulus to ensure that the solution

Wlðrq2Þ is not too large. Finally, we integrate wlðrqÞ itself along a two-component ray-and-arc path from q2
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Fig. 14. Three-component path in q-plane. The figure depicts an example three-component path of the type described in the text. Here

we have qB ¼ 20, scale1 ¼ 60, scale2 ¼ 40, and h ¼ �2p=5 so that the points q1, q2, q3 and qB respectively correspond to

60 expð�i2p=5Þ (·), 40 expð�i2p=5Þ (�), 20 expð�i2p=5Þ (}), and 20 (s). The depicted path corresponds to a r value lying on the

positive imaginary axis, so that between q1 and q3 we have Re ðrqÞ > 0. Better suppression of error would be had for h ¼ �p=2, in which

case the portion of the path between q1 and q3 would lie on the negative imaginary axis. However, in this case the final integration would

be over a longer arc, and on this final arc we do not expect to have error suppression. There seems to be some trade-off here, so we have

kept h as a parameter. In any case, typically scale1 and scale2 will be much larger, but the values here make for a good figure.
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to the real point qB, by way of an intermediate point q3. Such a remaining two-component path is depicted in

Fig. 14 as the final two portions of the curve connecting q2 to qB. This integration is carried out as follows.

Whether we are working with (31) or (60), we have an ODE of the form

d2Ûl

dq2
þRðq; rÞ dÛl

dq
þSðq; rÞÛl ¼ 0; ð68Þ

whence both wlðrq; rÞ and wlðrqÞ obey a first-order nonlinear ODE of the form

dwl

dq
� wl

q
þ w2

l

q
þRðq; rÞwl þ qSðq; rÞ ¼ 0: ð69Þ

To reach this equation, we have used, for example, wlðqrÞ ¼ qW q
l ðqrÞ=WlðqrÞ. Given the initial value for

wlðrq2Þ obtained from the first leg of the integration in the last paragraph, we first integrate (69) along the

straight ray from q2 to q3 which has the same modulus as the terminal point qB. The final leg, a rotation
back to the Re q axis, is an integration of (69) along an arc from q3 to qB.

3.2.3. Value of the kernel at the origin

For the Bessel case the origin value x̂lð0; qBÞ of the radiation kernel is the limit limr!0 wlðrqBÞ, while for
the Heun case the value x̂lð0; qBÞ is the limit limr!0 wlðrqB; rÞ. Whether considering the Bessel or Heun

case, we may derive an exact expression for the value x̂lð0; qBÞ. Turn first to the Bessel case, where



S.R. Lau / Journal of Computational Physics 199 (2004) 376–422 407
WlðrqÞ ¼
Pl

n¼0 cnðrqÞ
�n

is of course singular at r ¼ 0. However, with this exact expression it is easy to

check that

lim
r!0

wlðrqBÞ ¼ �l: ð70Þ

We stress that this calculation of x̂lð0; qBÞ makes use of the exact form of the outgoing solution, which is

not at our disposal in the Heun case. A separate recipe for getting this value, one without appeal to the

exact form of WlðrqBÞ, goes as follows. Set r ¼ 0 in (60), thereby reaching an ODE

d2Ûl

dq2
� lðlþ 1Þ

q2
Ûl ¼ 0 ð71Þ

with solutions qlþ1 and q�l. We now use ½qoq log q�l�jq¼qB
as the origin value x̂lð0; qBÞ, again finding �l.

Let us turn to the Heun case and follow this recipe for getting the value x̂lð0; qBÞ. We set r ¼ 0 in (31),

obtaining the following ODE:

d2Ûl

dq2
þ
�
� 1

q
þ 1

q� 1

�
dÛl

dq
þ j

q2

�
� jþ lðlþ 1Þ

qðq� 1Þ

�
Ûl ¼ 0: ð72Þ

Both solutions to this equation may be expressed in terms of infinite series in inverse q. The one corre-

sponding to q�l above has the form

X1
n¼0

anq�ðlþnÞ; ð73Þ

where a0 ¼ 1 and

anþ1 ¼
ðlþ nÞðlþ nþ 2Þ þ j

ðlþ nþ 1Þðlþ nþ 2Þ � lðlþ 1Þ an: ð74Þ

The series is positive and absolutely convergent for all q > 1. Elementary calculations then yield

x̂lð0; qBÞ ¼ �
X1
n¼0

ðlþ nÞanq�n
B =

X1
n¼0

anq�n
B ð75Þ

as our concrete expression for the value in question. Notice that this value approaches �l in the qB ! 1
limit as expected.

3.2.4. Accuracy of the numerical evaluation

Fig. 15 depicts the real part u64ð15iyÞ and the imaginary part v64ð15iyÞ of the Bessel FDRK

x̂64ðiy; 15Þ ¼ w64ð15iyÞ along the Im r axis for l ¼ 64 and qB ¼ 15. We have generated these plots using the
methods described in this subsection, and have listed other parameters set while obtaining them in the

figure caption. To examine the accuracy of these numerical profiles, we may compare them with corre-

sponding profiles obtained via the continued fraction expansion (62). We consider the profiles stemming

from the continued fraction expansion as the ‘‘exact’’ ones. With the two sets of profiles, one may compute

corresponding absolute and relative error measures. We plot these errors in Fig. 16. From such plots we

conclude that our numerical methods evaluate w64ð15iyÞ with an absolute supremum error less than 10�12

and a relative supremum error less than 10�14, at least for jyj < 1000. For the Bessel case at hand we have

found comparable error bounds associated with all other values of l 2 f10; 11; . . . ; 64g, although we note
that the corresponding y-interval needs to shrink by as much as an order of magnitude to maintain these

bounds for l ¼ 10.
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Fig. 15. Bessel FDRK x̂64ðiy; 15Þ ¼ w64ð15iyÞ. Here we plot the functions u64ð15iyÞ ¼ Re w64ð15iyÞ and v64ð15iyÞ ¼ Im w64ð15iyÞ, with
the y axis split into 512 subintervals. For jyj > break ¼ 1 we have evaluated x̂51ðiy; 15Þ using two-component integration with the

following parameter values: N¼ 131,072, M¼ 131,072, scale1 ¼ 1000, and scale2 ¼ 100. N and M are respectively the number of

integration steps taken along the first and second components of the path. For jyj6break we have evaluated x̂51ðiy; 15Þ using three-

component integration with the parameter values N¼ 131,072, M¼ 131,072, P¼ 2048, h ¼ p=4, scale1 ¼ 1000, and scale2 ¼ 100.

N , M , and P are respectively the number of integration steps taken along the first, second, and third components of the path. For both

integration methods j ¼ 1 and p ¼ 59. Typically, we have chosen break smaller, but now have break ¼ 1 to demonstrate the three-

component method.
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Fig. 17 depicts the real part u64ð15iy; iyÞ and the imaginary part v64ð15iy; iyÞ of the Heun FDRK

x̂64ðiy; 15Þ ¼ w64ð15iy; iyÞ along the Im r axis. We have again chosen the representative case l ¼ 64 and

qB ¼ 15, setting the rest of the parameters to the same values used to generate the Bessel profiles depicted in

Fig. 15. Note that the two sets of profiles are qualitatively very similar. However, they are different. In

particular, now the real part has a minimum value of �66:2816976576098 rather than �64. For the Heun

case at hand we have no analog of the continued fraction expansion with which to check the accuracy of the

profiles. Nevertheless, at least for y values of order unity, we can perform an accuracy check by comparing

the two-component and three-component path methods for evaluating the kernel. Such a comparison is
shown in Fig. 18. With the two numerically obtained kernels we form an absolute error measure

jDw64ð15iy; iyÞj and also a relative error measure jDw64ð15iy; iyÞj=jw64ð15iy; iyÞj, over y 2 ½0:5; 8� for both. In
the denominator of the relative error, we happen to have used the kernel stemming from the three-com-

ponent method. Fig. 18 displays plots of both error measures. Note that poor performance for the three-

component method is evident in the right portions of the plots. For the three-component method the length

of the third and final integration path grows with y. Therefore, for large y one expects a corresponding loss

of precision for the three-component method.
4. Sum-of-poles representation of the radiation kernel

In this section we focus on both exact and approximate representation of the FDRK x̂lðr; qBÞ as a sum

of poles. In the first subsection we qualitatively discuss the exact representation (55) of the FDRK as a
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Fig. 17. Heun FDRK x̂64ðiy; 15Þ ¼ w64ð15iy; iyÞ. Here we plot the functions u64ð15iy; iyÞ ¼ Re w64ð15iy; iyÞ and

v64ð15iy; iyÞ ¼ Im w64ð15iy; iyÞ. All parameters in these plots match those listed in Fig. 15 depicting the Bessel FDRK.
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Fig. 16. Error in Bessel FDRK x̂64ðiy; 15Þ. Here we plot the absolute error jDw64ð15iyÞj as well as the relative error

jDw64ð15iyÞj=jw64ð15iyÞj. These errors have been computed against the ‘‘exact’’ w64ð15iyÞ generated with the continued fraction ex-

pression (62). Parameters are the same as in Fig. 15.
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Fig. 18. Error in Heun FDRK x̂64ðiy; 15Þ ¼ w64ð15iy; iyÞ. Here we plot the absolute error measure jDw64ð15iy; iyÞj and the relative error

measure jDw64ð15iy; iyÞj=jw64ð15iy; iyÞj described in the text. We have y 2 ½0:5; 8� for both. All other parameters set in generating these

plots are the same as those listed in the caption of Fig. 15.
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(continuous and discrete) sum of poles, highlighting what we believe to be its main features. In the second

subsection we document our particular numerical construction of the FDRK as a sum of poles, and give an
analysis of its numerical error. We stress that from a theoretical standpoint we are conjecturing that the

Schwarzschild FDRK – built from the Heun function Wlðz; rÞ – admits the representation (55), although we

do provide compelling numerical evidence for a representation of this form. This is in contrast to the case of

the flatspace FDRK – built from the Bessel function WlðzÞ – which we theoretically know admits such a

representation [19]. Since for us the representation (55) of the Schwarzschild FDRK is ultimately conjec-

ture, there is more need to painstakingly justify it numerically, and we do so in the second subsection. This

section focuses on the | ¼ 0 (j ¼ 1) case, but we believe it to be representative.

In this section and in the simulations described in [1,2], we have almost exclusively worked with an outer
boundary radius qB 2 ½15; 25�, corresponding to a physical outer boundary radius rB 2 ½30m; 50m�.
Therefore, were we considering a more general isolated source of gravitational radiation, one with gravi-

tational radius 2m, then the boundary two-sphere B would be located outside of the strong-field region as

defined by Thorne [59]. Moreover, for wave simulation on a fixed background as we consider here, the

location of B corresponds to a metric coefficient F ðqBÞ from (5) in the range 0:9336 F ðqBÞ6 0:96. Whence

B lies in a region where the Schwarzschild metric is flat up to small correction. Our ROBC described in

Section 2.4 are not tied to the weak field region, however, for this region our numerical methods for

constructing the FDRK are accurate.

4.1. Qualitative study of pole locations and cut profile

Using the one-component path method described in Section 3.1.3, we first turn to the analytic structure

of WlðrqB;rÞ as a function of frequency r in the lefthalf plane, assuming that a zero of this function

corresponds to a pole location appearing in (55). Using the same method, we then draw some quick
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Fig. 19. Zeros of W2ð15r;rÞ and W2ð25r; rÞ. The left-hand plot shows contour lines of log jW2ð15r;rÞj, and the right-hand one shows

contour lines of log jW2ð25r;rÞj. The logarithm mollifies the singularity at the origin, distributing contour lines more evenly. Notice

that the zero locations are closer to the origin in the right-hand plot. In the left-hand plot and the right-hand plot we have also re-

spectively marked as crosses the zeros of the Bessel functions W2ð15rÞ ¼ 1þ 3ð15rÞ�1 þ 3ð15rÞ�2
and W2ð25rÞ ¼ 1þ 3

ð25rÞ�1 þ 3ð25rÞ�2
. Perhaps evident even to the eye, the Bessel and Heun zeros lie closer to each other in the right-hand plot (cor-

responding to the larger value of qB).
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Fig. 20. Zeros of W3ð15r;rÞ and W3ð25r; rÞ. The left-hand plot shows contour lines of log jW3ð15r;rÞj, and the right-hand one shows

lines of log jW3ð25r; rÞj. Again, crosses mark the corresponding Bessel zeros. Notice in the left-hand plot that the single real Bessel zero

corresponds to a pair of zeros in the Heun case. Actually, in the right-hand plot there are also two distinct Heun zeros, each one near

the Bessel zero lying on the real axis, but the resolution is almost too low to see them as distinct.
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observations concerning the cut profile flðv; qBÞ in (55). We mainly focus on the restricted parameter space

S determined by qB 2 ½15; 25� and 06 l6 10, but also make mention of some remarkable features which

crop up for other parameter values outside of this space. Our parameter space S has been chosen with the
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following reasons in mind. First, its qB interval is as discussed in the last paragraph. Second, it includes the

first few values of l, which we want to single out for special attention. Third (and related to the first two), it

avoids by design the aforementioned remarkable features. We stress that our discussion in this first sub-
section is mostly qualitative and amounts to a collection of conjectures without substantial numerical or

analytical proof. Although we are bypassing a truly thorough study of some interesting phenomena, we do

not believe these phenomena to be directly relevant for numerical implementation of ROBC (further re-

marks on this point to follow).

4.1.1. Zeros of the outgoing solution as a function of r
Recall that in Section 3.1.3 we denoted by fkl;n : n ¼ 1; � � � ; lg the zero set of the MacDonald function

Klþ1=2ðzÞ which is also the zero set of WlðzÞ. With this notation the zeros in r of WlðrqBÞ are then simply the
kl;n=qB. Let us collect several facts concerning such sets, summarizing results derived or listed in

[19,22,54,55]. First, for even l these zeros come in complex-conjugate pairs, while for odd l they again come

in complex-conjugate pairs save for a lone zero which lies on the negative Re r axis. Second, the scaled

zeros ðlþ 1=2Þ�1kl;n lie close to the asymptotic curve C introduced in Section 3.1.3. See Fig. 8 for a

graphical demonstration of this claim. Hence, for each l one may imagine the zeros distributed in a crescent

pattern in the lefthalf r-plane. As concrete examples, the zeros of W2ð15rÞ are approximately

�0:1000� i0:0577, while those of W3ð15rÞ are approximately �0:1226� i0:1170 and �0:1548þ i0. Re-

spectively, these zero sets are marked by crosses in the left-hand plots of Figs. 19 and 20.
Zeros for chosen parameter space. Dealing with WlðrqB; rÞ as a function of r in the Heun scenario, we

have denoted the zeros of this function by rl;n ¼ rl;nðqBÞ. Over the range S of parameters mentioned above,

the zeros rl;n behave qualitatively similar to the zeros kl;n=qB of WlðrqBÞ, save for one key difference as-

sociated with odd l. Fig. 19 displays contour plots showing zero locations for W2ð15r; rÞ and W2ð25r;rÞ.
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Fig. 21. Zeros of W3ð100r; rÞ. Here we plot contour lines of log jW3ð100r; rÞj. Note that two zeros of W3ð100r;rÞ lie outside of the plot,
as we focus on the pair of zeros closest to the real axis. The red cross is a zero of W3ð100rÞ. We might gather from this plot that the

feature associated with odd l and discussed in the text persists as qB gets large.
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Likewise, Fig. 20 displays contour plots showing zero locations for W3ð15r; rÞ and W3ð25r; rÞ. These plots
exhibit the main features associated with the zeros of WlðrqB; rÞ over S. To the eye, apparent zero locations

in these plots nearly match zero locations (marked as crosses) for the corresponding Bessel functions.
However, as shown in Fig. 20 and also noted in the figure caption, there is a key difference associated with

odd l. To appreciate the difference, compare the zeros of W3ð15rÞ with those of W3ð15r; rÞ. Notice that the

single zero of W3ð15rÞ lying on the negative Re r axis corresponds to two zeros of W3ð15r; rÞ, one lying just

above and the other just below the negative Re r axis. This is a generic feature belonging to all odd values of

l 2 f1; . . . ; 9g and qB 2 ½15; 25� considered here. Therefore, for the Heun scenario and the parameter space

S at hand there are an even number of zeros whether l is even or odd. Moreover, we believe that this feature

(of a pair of complex-conjugate zeros lying close to the real axis and together corresponding to a single

Bessel zero) persists as qB gets large, as evidenced by Fig. 21 and its caption. More precisely, if Nl ¼ NlðqBÞ
denotes the number of zeros belonging to WlðrqB; rÞ, then for each l 2 f0; . . . ; 10g we observe that Nl is

constant on ½15; 25� with N0 ¼ 0, N1 ¼ 2 ¼ N2, N3 ¼ 4 ¼ N4, N5 ¼ 6 ¼ N6, N7 ¼ 8 ¼ N8, and N9 ¼ 10 ¼ N10.

Our conjecture is that each Nl is also the same constant on ½15;1Þ.
Asymptotics of zeros. We discuss two asymptotic regimes for zero locations: one large qB at fixed l and

the other large l at fixed qB. Turning to the first regime, we conjecture that the zeros rl;nðqBÞ approach the

Bessel zeros kl;n=qB as qB becomes large. That is to say, the first term in the asymptotic expansion (53) is

rl;n;1 ¼ kl;n: ð76Þ

Fig. 22 is a typical piece of graphical evidence indicating such behavior. Using the zero locations shown in

this figure, we have confirmed for each n that jr10;nðqBÞ � k10;n=qBj ¼ Oðq�2
B Þ over ½15; 25�, in parallel with

the first two terms in (53).

Now turning to the second asymptotic regime, we remark on the order scaling of Heun zeros as l be-
comes large. We have observed that the scaled zeros ðlþ 1=2Þ�1rl;n tend to accumulate on the same fixed
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Fig. 22. Zeros of W10ðrqB;rÞ and W10ðrqBÞ. Here we plot zeros of these functions for qB ¼ 15; 17; 19; 21; 23; 25. The outermost crescent

of diamonds are the zeros of W10ð15r;rÞ, while the innermost crescent of diamonds are the zeros of W10ð25r; rÞ. The outermost crescent

of crosses are the zeros of W10ð15rÞ, while the innermost crescent of crosses are the zeros of W10ð25rÞ.
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Fig. 23. Zeros of W2ðrqB;rÞ. On the left we have a plot of log jW2ð2r;rÞj and on the right one of log jW2ð4r;rÞj, demonstrating that a

new pair of zeros is created between qB ¼ 4 and qB ¼ 2. The initial stages of this creation are perhaps evident in the rightmost plot.

Table 3

Approximate critical values of qB

l 0 1 2 3 4 5 6 7 8 9 10

qc1
B 1.49 1.52 2.52 2.06 3.81 2.67 5.11 3.31 6.44 3.97 7.75

vc1 0.63 1.31 0.79 1.49 0.85 1.60 0.89 1.67 0.91 1.71 0.92

Here we list rough values corresponding to the creation of the first new zero pair for WlðrqB;rÞ. For example, as qB is lowered from

1.5 to 1.48, the number N0 of zeros for W0ðrqB; rÞ jumps from 0 to 2. We also list approximate values for the location �vc1 of each zero-

pair creation, again with �0.01 error bounds.
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curve CqB as l becomes large. For example, using the 20 scaled zeros r20;nð15Þ=20:5 to hint at a candidate

C15, one finds that – to the eye at least – all scaled zeros for l < 20 lie on this curve. Of course CqB is of a

different shape than the dilated curve C=qB, although choosing a still larger fixed qB value yields better

agreement between the two curves. That is to say, consistent with the first type of asymptotic behavior

discussed, we have qBCqB ! C holding pointwise as qB ! 1. We are not confident that this order scaling is

robust for very large l.
Zero pair creation as qB approaches unity. We have claimed that over the qB interval ½15; 25� Heun zero

behavior is similar to Bessel zero behavior, save for the aforementioned curious feature concerning odd l.
As mentioned, we believe our claim remains true over ½15;1Þ for all low l here of interest. However, as we

now argue, the number Nl of zeros for a given l is not conserved as qB ! 1þ. The behavior we have noticed

is the following. 13

For each value l 2 f0; . . . ; 10g there is a critical value qc1
B of qB (less than 15 of course) for which a new

pair of zeros is created on the negative Re r axis, the branch cut. Below that there is yet another critical

value qc2
B for which yet another new pair of zeros is created on the negative Re r axis, and so on. Therefore,

it would seem that as a function NlðqBÞ is step-like and blows up as qB ! 1þ. Let us remark on the nature of

the zero lying on the branch cut for a critical value qcj
B . As qB is increased past qc1

B , say, two zeros appear to

collide on the branch cut. However, they do not merge into a double zero, rather they pass ‘‘over and under

each other’’, with each zero remaining on its own analytic neighborhood continued across the branch cut.
13 The Heun zeros under consideration are analogous to the ‘‘flatspace quasinormal modes’’ discussed in the introduction of [57] by

Nollert and Schmidt. As argued in Section 2.4.3, they are not the characteristic quasinormal modes of the blackhole.
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In Fig. 23 we document the creation of the first new zero pair for W2ðrqB; rÞ associated with decreasing

qB from 4 down to 2. In Table 3 we have listed approximations to the critical values qc1
B for l 2 f0; . . . ; 10g.

Using r ¼ v expðipÞ along the negative Re r axis, the table also lists approximate values for the location vc1

of each zero-pair creation. We have obtained these numbers using the method discussed below in reference

to Fig. 26. All of the approximate critical values in the table are well below our qB interval ½15; 25�; however,
for higher l values creation of a zero pair can occur in our interval. For instance, in what follows we

determine that creation of the first new zero pair for l ¼ 22 occurs for qc1
B ’ 15:70 and vc1 ’ 0:96.

4.1.2. Parameter dependence of the cut profile

Let us now discuss the cut profile flðv; qBÞ appearing in the representation (55) of the FDRK. We first

remark on the behavior of the profile over the chosen parameter range S, and then turn to exceptional
behavior associated with critical parameter values lying outside S.

Behavior over the chosen parameter range. For 06 l6 10 and for qB ¼ 15 and 25 we plot scaled even

profiles in Fig. 24 and scaled odd profiles in Fig. 25. The scaling allows us to view all profiles on the same

plot. Notice that the order-scaling is different for even and odd cases. As qB is increased towards 25, the

other endpoint of our interval, all of these profiles retain their shape; however, both their maximum value

(in absolute value) and the essential window of their support vary.

Cauchy principal value. The chosen parameter space S has been carefully tailored to avoid the excep-

tional situation where a zero lies on the branch cut. However, over our qB interval ½15; 25�, we shall of
course be interested in l values higher than 10, and on this interval zero pair creation is an issue for such l.
A glance at the form (63) of the cut profile flðv; qBÞ given earlier indicates that a negative real zero

r ¼ expðipÞv of WlðrqB; rÞ should give rise to a singular cut profile.

For the aforementioned exceptional case l ¼ 22 and qc1
B ’ 15:70, we depict the profile blow-up in Fig. 26.

In the top plot we have the cut profile f22ðv; 15:695964Þ, where 15.695964 is approximately the critical value

qc1
B of qB corresponding to the creation of the first new zero pair for the function W22ðrqB; rÞ. For qB values
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Fig. 24. Even cut profiles scaled by order for qB ¼ 15 and 25. Here, for example, f0ðv; 15Þ=0:5 is on the far left, and f10ðv; 15Þ=10:5 on

the far right.
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larger than qc1
B the function has 22 zeros, but as qB is lowered below qc1

B a new pair of zeros appears from the

branch cut. The lower plot depicts ReW22ð15:695964r; rÞ (solid line) and ImW22ð15:695964r; rÞ (dotted line)

as well as their intersection point below the zero line. For qB ¼ 15:695962 this intersection point lies above
zero, while for qB ¼ 15:695966 it lies below zero. As this intersection point appears to move smoothly with

varying qB, we conjecture the existence of a zero on the branch cut for a critical qc1
B between qB ¼ 15:695962

and qB ¼ 15:695966 (actually we know it lies between qB ¼ 15:695962 and qB ¼ 15:695964). Our guess at the

value, qB ¼ 15:695964, should be within 2� 10�6 of the true qc1
B . Furthermore, we note that for qB slightly

above the critical value the profile f22ðv;qBÞ is a positive peak like one in Fig. 24, but as qB is lowered past qc1
B

the profile transitions to a negative (and sharper) peak like one in Fig. 25.

Despite the blow-up discussed in the last paragraph, we emphasize that along the Im r axis, the FDRK

x̂22ðiy; qBÞ itself changes smoothly as qB varies across qc1
B . Indeed, the pieces Re x̂22ðiy; qBÞ and

Im x̂22ðiy; qBÞ may be computed either via the representation (55) or numerically via the methods outlined

in Section 3.2. Using the latter methods, we observe that both pieces vary smoothly as qB varies across the

critical value qc1
B . We therefore offer the following conjecture. Although the cut profile f22ðv; qBÞ is singular

at a particular point vc1 ’ 0:96 when qB ¼ qc1
B ’ 15:70, the corresponding integral contribution

� 1

p

Z 1

0

f22ðv; qBÞ
iy þ v

dv ð77Þ

to x̂22ðiy; qBÞ varies smoothly as qB varies across qc1
B . This would seem to indicate that f22ðv; qc1

B Þ=ðiy þ vÞ
has a distributional interpretation, and we believe its integral to be defined in the sense of Cauchy Principal

Value. The nearly antisymmetrical blow-up in the top plot of Fig. 26 is in accord with this conjecture.
4.2. Numerical construction of the radiation kernel

We now document our numerical construction of the representation (55) over the chosen parameter

space S, also discussing in detail the accuracy of the construction.

4.2.1. Construction for chosen parameter space

To obtain the numerical kernel, we have used the one-component path method described in Section 3.1.3

both to obtain pole locations and strengths as well as the cut profile for certain parameter choices. Let us

first discuss our treatment of the poles.

Construction of pole locations and strengths. Let a choice of l 2 f0; . . . ; 10g remain fixed throughout this
paragraph. We choose nine Chebyshev points f1=qk

B : k ¼ 0; 1; . . . ; 8g on the interval ½1=25; 1=15�. That is to
say, the formula

2nkB ¼ 0:7þ 0:04þ ð0:7� 0:04Þ cos½pð2k þ 1Þ=ð2nþ 2Þ� ð78Þ

determines the nine numbers nkB ¼ 1=qk
B. Our choice of nine Chebyshev points suffices for our purposes,

although we make no claim that nine is the optimal number of points. Next, for each k we have used the

secant algorithm to find the zero set frl;nðqk
BÞg of Wlðrqk

B; rÞ. Then, at fixed l and n we interpolate each

function rl;nðqBÞ by an eighth degree Chebyshev polynomial Tl;nð1=qBÞ in inverse qB, so that this polynomial

approximates rl;nðqBÞ on the interval ½15; 25�. On the same interval, we approximate the pole strengths
al;nðqBÞ by T 0

l;nð1=qBÞ=qB, where here the prime 0 denotes d=dnB differentiation.

Construction of the cut profile. Given any small positive g, say ’ 10�12, we assume the existence of

corresponding finite integration limits, vmin (which may or may not be 0) and vmax, such that the integral

� 1

p

Z vmax

vmin

flðv; qBÞ
iy þ v

dv ð79Þ
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approximates the true value

� 1

p

Z 1

0

flðv; qBÞ
iy þ v

dv ð80Þ

to within relative error g uniformly for y 2 R. We stress that this is an assumption, although one apparently

true for the analogous cut profiles stemming from integral order (m ¼ lþ 1=2 ¼ n) Bessel functions

Wðn�1=2ÞðrqBÞ, as shown in the fourth section of [19]. In practice we have ‘‘eyeballed’’ the integration window

½vmin; vmax�, for example referring to Fig. 3 of Section 2.4.2, we have chosen ½0:0005; 1:125� for l ¼ 2 and
qB ¼ 15. The correctness of our guess will be confirmed when we later examine the accuracy of the kernel.

Finally, to obtain the cut contribution to the value x̂lðiy; qBÞ for a given y, we discretize the integral (79) via
the Simpson rule. For the profile in the aforementioned figure we have used 1024 subintervals. Values

flðvj; qBÞ belonging to nodes vj in the corresponding discrete sum are computed with the one-component

path method. Since for our chosen parameter range the considered profiles appear to be of definite sign, we

expect that these sums are not plagued by cancellation error.

The foregoing construction of the cut contribution is applicable for a fixed value of qB, whereas our

construction for poles yielded locations and strengths over the whole qB interval ½15; 25�. To handle the cut
contribution over the whole interval, we again introduce the Chebyshev points f1=qk

B : k ¼ 0; 1; . . . ; 8g, and
– for each vj integration node – construct an eighth degree polynomial in 1=qB which interpolates

flð15vj=qB; qBÞ. Notice that we are also scaling the integration nodes vj associated with qB ¼ 15 [and de-

termined by the choice of vmin and vmax as well as the number of subintervals chosen to evaluate the integral

(79) via Simpson’s rule].

4.2.2. Accuracy of the construction

We check the accuracy of our numerical kernel in two ways, and as one result provide compelling
numerical evidence that the FDRK indeed admits the sum-of-poles representation (55).

Value of the kernel at the origin. Building the pole and cut contributions to the kernel as described,

we may compute a numerical value for x̂lð0; qBÞ and check it against the accurate series (75). We find

that for any choice of l and qB in S the numerical value for x̂lð0; qBÞ has absolute error less than 10�11

(in fact on the order of 10�12 or better). We stress that this level of accuracy holds even when 1=qB is

not a Chebyshev node, in which case the pole and the cut contributions to the kernel are obtained via

interpolation.

Direct check. For 16 l6 10 we now have two independent numerical methods for evaluating the Heun
FDRK x̂lðiy; qBÞ. The first is evaluation of the numerical kernel directly constructed via the representation

(55) as described in this subsection. The second is evaluation using path integration as described in Section

3.2. As a final and perhaps most convincing accuracy check, we compare these two methods. In Fig. 27 we

have such a comparison for x̂3ðiy; 15Þ ¼ w3ð15iy; iyÞ. With the two numerically obtained kernels we form an

absolute error measure jDw3ð15iy; iyÞj and a relative error measure jDw3ð15iy; iyÞj=jw10ð15iy; iyÞj, where in

forming the denominator of the relative error we happen to have used the directly constructed kernel. We

plot these error measures in the figure. Over all of S, save for l ¼ 0 cases, this check indicates that we have

relative and absolute errors better than 10�11. As for l ¼ 0, we believe the integration methods of Section
3.2 to be less reliable than the directly constructed kernel. Indeed, x̂0ðiy; qBÞ is quite concentrated around

the origin, and very small values of y negate the exponential error suppression built into the three-com-

ponent integration method of Section 3.2.2. In any case, for l ¼ 0 the first accuracy check of x̂0ð0; qBÞ
should be convincing in and of itself. Indeed, in the absence of a pole contribution to the kernel, one expects

the largest error at the y-origin. Moreover, the largest error is indeed concentrated near the origin in other

small-l plots such as those shown in Fig. 27. Via comparison with the series (75), we have found that our

directly constructed numerical kernel yields a value for x̂0ð0; 15Þ with an absolute error better than

7.5� 10�13 and a relative error better than 2.2� 10�11.
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Fig. 27. Error in Heun FDRK x̂3ðiy; 15Þ ¼ w3ð15iy; iyÞ. With 256 y-subintervals we plot the errors, jDw3ð15iy; iyÞj and

jDw3ð15iy; iyÞj=jw3ð15iy; iyÞj, described in the text.
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5. Discussion

Our description of ROBC on the Schwarzschild geometry has been inspired by Alpert, Greengard, and

Hagstrom’s description for flatspace. Moreover, in order to implement the described conditions in an actual

code (the results of which are reported in [1,2]), we have also based our implementation on the AGH

technique of kernel compression. Namely, approximation of the FDRK by a proper rational function as

commented on at the end of Section 2.4.2. Refs. [1,2,19,55] (with more detail in the latter three) describe the

algorithm which produces the rational approximation, that is the numbers cl;n and bl;n appearing in (57).
Here we again emphasize that its use requires the ability to accurately evaluate the FDRK x̂lðiy; qBÞ for
y 2 R (or at least for real y in some large window about the origin). We have developed numerical methods

in this article precisely for use in the compression algorithm. With these considerations in mind, let us

compare our work to that of AGH from theoretical and numerical standpoints.

From a theoretical perspective our work is less satisfactory than that of AGH, chiefly because, as it turns

out in [2], we are unable to give a rigorous asymptotic analysis of our implementation, that is to say a

description of the growth rate of d [the integer in (57)] in terms of order m ¼ lþ 1=2 and error tolerance e.
For each angular l index AGH deal with a Bessel FDRK which is theoretically known to admit a sum-
of-poles representation, one corresponding to a purely discrete sum in the case of 3þ 1 wave propagation

and to a discrete and continuous sum in the 2þ 1 case. Moreover, due to the exhaustively studied

properties of Bessel functions, they also start with a wealth of useful information about how the pole lo-

cations, pole strengths, and (in the 2þ 1 case) cut profile for the representation behave in all conceivable

asymptotic regimes (which include certain scaling properties as l becomes large). With tight control over

where the physical poles accumulate and the behavior of cut profile, they are able to borrow ideas from

the fast-multipole method in order to replace (discrete and continuous) physical pole sums with (fully

discrete) approximate pole sums of fewer terms. As a result, they rigorously prove that the sum-of-poles
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representation for the Bessel FDRK admits a rational approximation, one uniformly valid in the righthalf

frequency plane and exhibiting exponential convergence as the number of approximating poles is increased.

For the scenario we have considered, such an analysis would seem out of the question. Indeed, although we
have provided extremely convincing numerical evidence that the Heun FDRK admits a sum-of-poles

representation, one strikingly similar to the 2þ 1 Bessel case, even this is conjecture from a theoretical

standpoint. The battery of asymptotics needed to theoretically prove that such a representation admits a

rational approximation in the style of AGH is certainly well beyond this author’s knowledge of special

functions.

However, from a purely numerical standpoint we believe our work is closer to being on the same footing

with that of AGH. Indeed, as seen in [1,2], insofar as numerical implementation of flatspace ROBC is

concerned, their elegant asymptotic analysis proving the existence of rational approximations is somewhat
beside the point. Ultimately, their compression algorithm (which yields the desired rational approxima-

tions) relies only on the ability to evaluate the Bessel FDRK along the imaginary axis of the frequency

plane. For Bessel functions, which obey certain order recursion relations, such evaluation can be efficiently

done via the continued fraction expression (62) following from such relations. We stress that such evalu-

ation requires no knowledge of the sum-of-poles representation for the kernel. Although we have no such

continued fraction expression with which to evaluate the Heun FDRK, we have seen that our integration

method is almost as accurate (in the sense spelled out by Section 3.2.4). For Bessel kernels we have observed

that the numerical path integration required by our method is more expensive than continued fraction
evaluation, and all the more so as the order lþ 1=2 gets large, although we have not made a systematic

comparison of the two methods. However, the cost of evaluation is almost beside the point, since in

principle any extra cost associated with our method need only be incurred once. Of true importance is

accuracy, and through the use of extended precision we believe it possible to evaluate Heun kernels through

a bandwidth of 1024 and accurately enough to allow for rational approximation with e ¼ 10�15, the best

numbers reported by AGH. We point out that, insofar as both gravitational wave astronomy [60] and the

post-Newtonian approximation [59,61] of the gravitational field are concerned, l values well below 64 are

the ones primarily relevant to gravitational wave observation.
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